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Expert knowledge for the recognition of leukemic
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This work shows the advantage of expert knowledge for leukemic cell recognition. In the medical area, visual analy-

sis of microscopic images has regularly used biological samples to recognize hematological disorders. Nowadays,

techniques of image recognition are needed to achieve an adequate identification of blood tissues. This paper

presents a procedure to acquire expert knowledge from blood cell images. We apply Gaussian mixtures, evolu-

tionary computing, and standard techniques of image processing to extract knowledge. This information feeds

a support vector machine or multilayer perceptron to classify healthy or leukemic cells. Additionally, convolu-

tional neural networks are used as a benchmark to compare our proposed method with the state of the art. We use

a public database of 260 healthy and leukemic cell images. Results show that our traditional pattern recognition

methodology matches deep learning accuracy since the recognition of blood cells achieves 99.63%, whereas the

convolutional neural networks reach 97.74% on average. Moreover, the computational effort of our approach is

minimal, while meeting the requirement of being explainable. ©2020Optical Society of America

https://doi.org/10.1364/AO.385208

1. INTRODUCTION

Image visual recognition is a fundamental task to solve problems
in diverse fields. Branches of medicine such as pathology and
hematology require the analysis of images to identify some
abnormalities in tissues [1,2]. Nevertheless, lack of homo-
geneity in the images due to non-controlled conditions in the
biological sample acquisition or the image capture, make the
task of recognition difficult. Furthermore, inexperience or
physical conditions such as fatigue or health conditions of peo-
ple in charge of image acquisition and visual inspection cause
differences in the interpretation of the images. Particularly,
hematological diseases such as leukemia represent severe prob-
lems worldwide, and in undeveloped nations, the situation is
worse, as cases in Mexico represent one of the leading causes of
death in people under 15 years [3]. Some studies suggest that
the incidence of a specific leukemia type named acute lym-
phoblastic (AL) is among the highest in the world [4]. Although
advanced methods exist for the detection of this illness, these
are very expensive and inaccessible for most of the affected
people. Typically, the centers where these methods are avail-
able are located in big cities, which increases the cost and time
of detection and treatment. For these reasons, it is common

practice to carry out a visual analysis of blood smears to detect
some abnormalities in blood cells. Sometimes, the first stage of
treatment starts from the results in basic laboratory tests, with
visual analysis being one of them.

Expert knowledge in computer science is generally achieved
with rule-based systems that encapsulate synthetically what an
expert knows (through extensive knowledge or ability based
on research, experience, or occupation) in a particular field.
The problem of blood cell recognition in leukemia has been
addressed widely in the literature with diverse techniques of
image processing and machine learning [5–14]. However, a
review of the influence of expert knowledge in the task of recog-
nition of leukemic cells has been seldom addressed. Considering
expert knowledge as a method of information integration that
allows the recognition of an object, in which specific informa-
tion refers to particular knowledge about a distinct area or field,
in Refs. [15–17], we found some advantages of using expert
knowledge in the task of image recognition. In Ref. [15], expert
knowledge is used as a pre-processing step to prepare input
images for a classifier based on deep learning to study acute
lymphocytic leukemia detection in single-cell blood smear
images with excellent results. The authors of Ref. [16] describe
data augmentation techniques to extract high-level features to
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distinguish between immature leukemic blasts and healthy cells
by using a deep-learning-based method. They achieve more
accurate recognition while incorporating data derived from
expert knowledge. Also, [17] proves that fuzzy models built on
expert knowledge, within a particular case, make the design
more accurate while adapting the parameters and outputs to an
application of data analysis.

It is worth mentioning that there are approaches that do not
use expert knowledge to achieve object recognition [18,19].
Although these models achieve excellent results in many prob-
lems, several drawbacks are the lack of robustness, the high
amount of overwhelming images, and that final results are in
general unexplainable. Additionally, the models usually fail
when the dataset used to test the model changes or the number
of images in training is minimal concerning the number of
classes and examples. For instance, [20] proposes to classify 40
classes of blood cells using typical network architectures, but the
performance is low due to the extremely unbalanced number of
images among different categories. Also, the limited number of
images reported in Ref. [21] affects the accuracy in recognition
of a type of blood cell called a lymphocyte, reaching no more
than 74.7% of accuracy.

From previous revision, it is possible to note that the influence
of expert knowledge for the task of recognition, and particularly
for leukemic cells, is missing. In this work, we propose to deter-
mine the importance of the use of expert knowledge for such a
task. In order to avoid the influence of different types of classi-
fiers discriminating among classes [16], we selected two types
of classifiers: those that naturally require expert knowledge and
those that do not need it. Thus, representative classifiers used
widely in literature are support vector machine (SVM) [22,23]
and multilayer perceptron (MLP) [24,25] for the first types, and
convolutional neural networks (CNNs) as the second type.

The main contribution of this paper is to show that expert
knowledge is useful for the recognition of leukemia from blood
cell nucleus images, which also leads to a better interpretation
of the image, as opposed to approaches where this knowledge is
unused. Moreover, the method for generating expert knowledge
is entirely explainable since standard classical techniques of
image processing such as the Gaussian mixture model (GMM)
and evolutionary computing isolate the nucleus from the images
in the dataset. A small sample of images with balanced classes
is enough to make the comparison for recognition of leukemic
cells by selected classifiers, using expert knowledge with derived
features from the nucleus isolated in the previous stage. In the
end, we show that the use of the proposed method reduces
time consumption and computational resources in contrast to
traditional techniques, which in their standard form, do not use
expert knowledge.

The organization of this paper is as follows. Section 2 presents
the materials and methods of the proposed work and the process
to obtain expert knowledge of blood cells for their recognition.
Section 3 details the experimental results. Finally, we give our
conclusions in Section 4.

2. MATERIALS AND METHODS

An essential aspect of detecting hematological diseases is the
morphology of cell components. In this regard, the nucleus of

the cell brings relevant information for the blood cell recogni-
tion [26]. Notice the relevance of the nucleus for the recognition
of a type of cell. Figure 1 shows images of some subtypes of
healthy blood cells, in which the salient part is in the center of
the image. It looks like a region of semi-circular shape more
prominent than the remaining parts. Within this region, we
can see other regions of intense color made of dark purple hues;
this is the nucleus of the cell. As can be seen, the nucleus is a
useful image region to discriminate between different types of
cells. From the images, it is suggested that cells for each subtype
shown have nuclei with similar shapes. Although there are other
elements in the cell of interest, in this work, only the nucleus
serves to recognize a leukemic cell from a healthy cell. Images of
leukemic cells are shown in Fig. 2, where the same subtype of a
cell is presented in its healthy and leukemic states. Within the
most notable differences between a leukemic and healthy cell are
the nucleus shape, its size, and the homogeneity.

In the first stage of our proposed expert system, we obtain
the nucleus region from the input image. Later, some geometric
properties (or descriptors) are extracted from this image region,
following criteria proposed by medical experts. In a second
stage, descriptors obtained through this expert knowledge are
used to recognize the cell type as either a healthy or sick cell
according to their qualities or characteristics.

Typical datasets used for the recognition of leukemic cells
have drawbacks related to copyright issues since most images are
not public [7,13], and the datasets are unbalanced [8,14] or in
other cases were built from diverse sources and different acqui-
sition conditions [12,18]; to overcome these disadvantages, in
this work, we have selected a small dataset from Labati [27].
Although it has been reported that CNNs have a poor perform-
ance with small datasets, in the problem that we propose, the
relationship among the number of features, number of classes,
and dataset size does not influence significantly the performance
of the CNNs used, as shown in Section 3. Additionally, there is
evidence that in some tasks, CNNs achieve excellent results even
with small datasets as in Ref. [28], where 260 images per class are
used for discrimination between two classes in each experiment,
whereas in Ref. [29], the problem of multi-instance multi-label

Fig. 1. Different subtypes of healthy blood cells [26]: (a) Neutrophil
cell, (b) Band neutrophil cell, (c) Lymphocyte cell, (d) Monocyte cell,
(e) Basophil cell, and (f ) Eosinophil cell.
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Fig. 2. Representative regions in images of healthy and leukemic
cells: (a) Healthy cell, (b) Healthy cell, (c) Leukemic cell, and (d)
Leukemic cell.

classification is addressed using 591 images for 23 labels, and
2000 images for five labels in separate experiments.

Labati acquired the images with an optical microscope
coupled with a Canon PowerShot G5 camera [27]. All
images are in .jpg format with 24-bit color depth, resolution
2592⇥ 1944. Images are divided into two datasets: ALL_IDB1
and ALL_IDB2, both including two types of cells: healthy cells
and cells with AL leukemia (ALL) in which expert oncologists
provide the classification. Images from ALL_IDB1 are taken
with different magnifications of the microscope ranging from
300 to 500. Thus, each image contains one or more cells; in
total, they are 108 (59 healthy cells and 49 leukemic cells) with a
variable resolution between 1226⇥ 652 and 2592⇥ 1944.

In this work, we use the dataset ALL_IDB2; it is a collec-
tion of cropped area images of healthy and leukemic cells that
belongs to ALL_IDB1, which includes 260 images of blood cells
(130 for each cell type) in .tif format with resolution 257⇥ 257.
Images were converted to grayscale using linear transformation
in the range of [0–255] and resized to 600⇥ 600 pixels using
bicubic interpolation. Each image contains only one cell of
interest, as illustrated in Fig. 2.

A. Isolating the Nucleus of Blood Cells

Features such as the size and shape of cells, nucleus, and dis-
tribution of these cells in the sample are typically used for the
detection and diagnosis of cancer from microscopic images [1].
Notice that in leukemia, the affected cells never were healthy,
mainly because of the leukemic state given by the immaturity
of the blood cell and its proliferation. For this reason, the cell
appears in atypical shapes, as in Fig. 2, where images of a subtype
of blood cell named lymphocyte appear with a nucleus bigger
and less round in comparison with the healthy cells. Thus,

Fig. 3. Overlapping representative histograms of 10 images per
class: healthy and leukemic cells.

experts regard the nucleus as an important region to discrimi-
nate a healthy cell from a leukemic cell. These morphological
features of a nucleus, such as its roundness, area, and perimeter,
to mention a few, are useful for the recognition of blood cells.

In the images of blood cells, it is worth to note that these
include at least three prominent regions: a dark region, which
corresponds to the nucleus of a cell, a region with median inten-
sity where most small cells arise (small circles), and finally a
clearer region known as the background. In this regard, Fig. 3
shows the superposed histograms of gray scale images of healthy
and leukemic cells. The histograms show three modes, which
correspond to the most prominent regions in the images, the
gray level values that occur most frequently in the histogram.
According to the typical shape of histograms, we observe that for
both types of cells, the mode referring to the nucleus of a cell (the
mode on the left side) is separate from the remaining parts.

As mentioned before, the extraction of a nucleus region in
the input image (darker region) through a normalized histo-
gram is an estimation of the occurrence probability of intensity
levels in the image, and thus it can be contained in a mixture
of Gaussians. This is because an image is composed of gray
intensity levels in the range L = [0, L � 1]. These gray levels
can be represented as a histogram h(lm) = sm , where lm is the
mth intensity value, and sm is the number of pixels in the image
with intensity lm . Then, h(lm) can be normalized by dividing
each of its components by the total number of pixels in the
image denoted by T, so that the normalized histogram h(lm) is
given by v(lm) = sm/T, for m = 0, 1, 2, . . . , L � 1, which is
an estimate of the probability of occurrence of intensity level lm

in the image [30]. Thus, it is valid to consider the normalized
histogram v(lm) described by a mixture of Gaussians through
Eq. (1) as follows:

p(x ) =
KX

i=1

Pi · pi (x ) =
KX

i=1

Pip
2⇡�i

e

(x�µi )
2

2�2
i . (1)

A GMM is a parametric approach used to approximate probabi-
listic data models. Hence, such models can be used to compute
the thresholds to separate regions of interest (ROIs) in an image
[31]. In this sense, we use GMM because, unlike other non-
parametric models such as Otsu [32], it considers the data of
several components that can be modeled by a probability distri-
bution, and they are susceptible to being analyzed separately. As
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Fig. 4. Mixture of Gaussians: (a) Complex multimodal probability
density function created by taking a mixture of several normal distribu-
tions, and (b) Mixture of Gaussians in terms of a jointed distribution
Pr (x , h) between the observed variable x and a discrete hidden vari-
able h.

a consequence, a ROI can be obtained from the mixed model,
whereas with non-parametric models, this does not occur.

Considering that in Eq. (1), Pi is a priori probability of class i ,
then pi (x ) is assumed as the probability distribution function of
intensity level random variable x in class i . In this way, the data
in the mixture of Gaussians are described as a weighted sum of
K normal distributions (number of classes within the image,
i.e., the representative modes in Fig. 3), where µi and �i are
the means and covariances of the normal distributions, respec-
tively, and Pi are positive value weights that sum to one. Thus,
according to Ref. [33], mixtures of Gaussians models describe
complex multi-modal probability densities by combining
simpler constituent distributions (see Fig. 4).

Hereunder, the value of K is adjusted to three because the his-
tograms of images contain three modes that represent each class
or region in these images; thus, i = 1, . . . 3 in Eq. (1).

Later, the values for µ, � , and P in Eq. (1) are computed
using the squared minimum error between the sum of Gaussian
mixtures p(x ) and the image histogram v(lm); this last is seen as
a probability distribution function according to Eq. (2):

E = 1
L

LX

j=1

(p(x j )� v(x j ))
2. (2)

The problem of parameter estimation describes the error
minimization of Eq. (2) as follows:

Minimize f (E ) = 1
L

LX

j=1

(p(x j )� v(x j ))
2, (3)

with design variables

y = {p1, �1, µ1, p2, �2, µ2, p3, �3, µ3} (4)

subject to

z1(E ) = (p1 + p2 + p3)� 1 = 0. (5)

Note that for each mixture, we need to estimate three
parameters: µ, � , and p , which describe the mixture.

Since the estimation of parameters is a difficult problem,
an analytical solution considering a set of simultaneous tran-
scendental equations is not available due to the nonlinearity of
equations. Additionally, the use of an iterative approach based

Algorithm 1. Differential Evolution Algorithm

1: . . .
2: while Conver g enc eCr i ter ion = unknown do

3: F qt defines a vector of the current vector population
4: F nvt defines a vector of the new vector population
5: for t = 0; t < Np ; t + + do

6: r1 r and(Np)

7: F select a random index from 1, 2, ... , Np

8: r2 r and(Np)

9: F select a random index from 1, 2, ... , Np

10: r3 r and(Np)

11: F select a random index from 1, 2, ... , Np

12: ut qr 3 + F ⇤ (qr 1 � qr 2)

13: if f (ut) < f (qt) then nvt ut ;
14: else nvt qt ;
15: . . .

on the gradient information is highly dependent on the initial
values [30]. The differential evolution (DE) algorithm [34]
has been selected in this work for the estimation of parameters
because it has demonstrated excellent performance in prob-
lems of image processing and the estimation of parameters in
diverse applications [35,36]. In this work, DE is an evolutionary
algorithm in which the parameters of Eq. (4) define each indi-
vidual of the population Np . The constraint z1(E ) in Eq. (5) is
handled through feasibility rules proposed in Ref. [37], which
considers the fitness of each individual during the selection
process within the evolutionary algorithm.

DE addresses the starting point problem by sampling the
objective function at multiple, randomly chosen initial points.
The preset parameter limits (design variables) define the domain
from which the Np vectors are chosen (initial population) in
such a way that each vector is indexed with a number from zero
to Np � 1. Then, DE generates new points through perturba-
tions of existing points; in other words, DE disturbs vectors with
scaled differences of two randomly selected population vectors.
Thus, to generate the trial vector, u0, a scaled random vector dif-
ference is added to a third randomly selected population vector.
In the selection stage, the trial vector competes against the popu-
lation vector of the same index. In the step of select-and-save, the
vector with the lower objective function value (considering min-
imization) is a member of the next generation. The procedure
repeats until all Np population vectors have competed against
a randomly generated trial vector. Once testing the last trial
vector, the survivors of the Np pairwise competitions become
parents for the next generation in the evolutionary cycle [38].
The pseudo-code (Algorithm 1) shows the general idea of DE.

In DE, D-dimensional parameter vectors are defined as the
population for each generation G [see Eq. (6)]. The population
size is defined with Np = 30, whose individuals are defined as in
Eq. (4):

qt,G , t = 1, 2, . . . , Np . (6)

The DE algorithm’s primordial functions are muta-
tion, crossover, and selection. Thus, for each vector �!qt,G ,
t = 1, 2, . . . , Np , a mutant vector�!ve is generated as follows:

�!ve =��!qr 1,G + F · (��!qr 2,G ���!qr 3,G). (7)
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Next, a set of indices randomly created r1, r2, r3 in the popula-
tion [1, 2, 3, . . . , Np ] need to be integers, mutually different,
and with F > 0. Furthermore, r1, r2, and r3 should be different
from the running index t ; thus, it is necessary that Np � 4 to
satisfy this condition. F controls the amplification of the dif-
ferential variation (��!qr 2,G ���!qr 3,G). In general, it is a real and
constant factor in the range [0,2]. Crossover is used in order to
increase the diversity of the perturbed parameter vectors, and
hence a trial vector u is used as follows:

���!
ut,G+1 = (u1t,G+1, u2t,G+1, . . . , u Dt,G+1), (8)

where D is the vector dimension. To build the trial vector u, the
following conditions are used:

uwt,G+1 =
⇢
vewt,G+1 if(randb(w)C R) or w = rnbr(t)
qwt,G if(randb(w) > CR) and w 6= rnbr(t)

,

(9)

where w = 1, 2, . . . , D, and r andb(w) is the wth evaluation
of a uniform random number generator in the range [0,1].
CR is the crossover constant defined by the user with a value
between zero and one. r nbr (t) is a randomly chosen index
w = 1, 2, . . . , D. This ensures that ut,G+1 will obtain at least
one parameter from ve t,G+1. Selection of individuals for next-
generation G + 1 is achieved while comparing the trial vector
ut,G+1 with the target vector qt,G . Because the aim is to min-
imize the objective function (3), the vector with a lower cost
will be retained. The constraint defined in (5) is handled with a
tolerance ✏ = 1e

�6. Remaining parameters are used as follows:
mutation factor F = 0.5, crossover constant CR = 0.8, and
number of generations G = 200. These values were obtained
experimentally. The last process is repeated until f (E ) = 0.004
or G = 200 is reached.

Once the parameters µ, � , and P of Eq. (1) are computed
through Algorithm 1, these can be used to select the region of
the nucleus in the cell. First and foremost, it is worth noting that
the ROI depicting darker pixels in the image refers to the mode
located leftmost in the image histogram; in other words, the
nucleus region (see Fig. 3). Thereby, a linear transformation can
be used in this manner to contrast enhancement exclusively over
the darker image region. The following transformation is used
to achieve this:

Y = A
c � a

b � a
. (10)

A = 255 in Eq. (10) refers to the maximum gray level value,
whereas a and b provide bottom and upper limits (calculate with
the mode), and c defines the gray value in the input image. This
is illustrated graphically in Fig. 5.

Finally, we note that a and b values in Eq. (10) can be derived
from the parameters previously obtained by the DE algorithm
using each Gaussian model of Eq. (1). The calculation of these
values is done taking into a count the three-sigma rule, which is
about 99.7% of values from a normal distribution considering
three standard deviations [39]. Hence, from µ1 and �1, the
values for a and b are proposed as follows:

a = µ1 � 3 ⇤ � ,

b = µ1 + 3 ⇤ � . (11)
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Fig. 5. Graphical representation of parameters used for a contrast
enhancement through Eq. (10).

Fig. 6. Graphical representation of positions of a and b for images
(b) and (c) in Fig. 2: (a) Histogram of healthy cell, and (b) Histogram of
leukemic cell.

As a result, with the application of Eq. (10) in the input image, it
is possible to outline the nucleus within the image. To illustrate
the positions for a and b in the histogram of an image, two his-
tograms showing the positions for these variables are presented
in Fig. 6. The histograms belong to images (b) and (c) in Fig. 2.

After applying the process previously described to each
image, we obtain the region of the cell nucleus. Post-processing
applied to this image allows us to obtain a homogeneous region
of the nucleus and, in some cases, to preserve and, in others,
highlight the outstanding properties of the cell nucleus. We
considered such a process as expert knowledge. Also, this step
is a requirement for the extraction of features. Morphological
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Table 1. Characteristics of Normal White Blood Cells
[26]

Subtype of

Blood Cell

Cell Size

(µm) Nucleus Chromatin

Neutrophil 10–15 2–5 lobes connected by thin
filaments without visible

chromatin

Coarsely
clumped

Band
neutrophil

10–15 Constricted and chromatin
visible within the thinnest

part

Coarsely
clumped

Lymphocyte 7–18 Round to oval; may be slightly
indented; occasional nucleoli

Condensed to
deeply

condensed
Monocyte 12–20 Variable; may be round

horseshoe or kidney shaped;
often has folds producing

Moderately
clumped; lacy

brain-like
convolutions

Eosinophil 12–17 2–3 lobes connected by thin
filaments without visible

chromatin

Coarsely
clumped

Basophil 10–14 Usually two lobes connected
by thin filaments without

visible chromatin

Coarsely
clumped

operators are allowed to join some regions in the image. Edges
are extracted with Robert’s algorithm [40]. Later, a dilatation
operation is applied using a structuring element of a disk with
radius five. The algorithm for edge extraction, and the disk
size and its shape were selected experimentally through visual
inspection. Methods for edge extraction additionally tested were
Sobel [41], Canny [42], and Prewitt [43]. Disk geometries such
as diamond, octagon, and sphere shapes with sizes between three
and seven also were tested.

In the second stage, expert knowledge obtained from this
region is later used to recognize the cell.

B. Feature Extraction

We considered features taken from medical literature, where
various properties of the cells are depicted as meaningful to their
visual identification [44]. In this work, some of these proper-
ties are part of the expert knowledge of blood cell recognition.
In this regard, the World Health Organization’s (WHO’s)
Classification of Tumors and Lymphoid Tissues, including leu-
kemia, is based on morphology, immunophenotyping, genetic
features, and clinical features [26]. In this work, we address
the leukemia morphology since only white cells are affected.
Table 1 shows the characteristics for normal cells as well as the
appearance of their nuclei. Thus, in leukemia, diverse changes
from these characteristics can be found. Images of cells described
in Table 1 can be observed in Fig. 1.

Thus, we selected features to describe the nucleus, consider-
ing the properties listed in Table 1. For example, the constricted
attribute refers to the narrow shape, typically well defined, while
coarsely clumped means the presence of a rough agglomeration
in some regions into the nucleus, which in some images can
appear as darker subregions as well as with the presence of small
holes. Thus, these properties have a relationship with measures
of eccentricity and the Euler number, to mention a few.

Considering commonly used features in literature for the
recognition of blood cells [7,9–12], we selected those that most
closely relate to Table 1. Hence, we consider 17 features: area,
diameter ratio, extent, eccentricity, orientation, solidity, Euler
number, perimeter, convex area, rectangularity, and the seven
Hu’s invariants. We apply the MATLAB toolbox of image
processing to obtain the first nine features, and rectangularity
through the difference between the width and height of the
BoundingBox. Hu’s moment invariants give a method for
objects’ descriptions regarding area, position, and orientation,
to mention a few. It is important to note that variables used in
equations describe the seven Hu’s invariants in a new context.

Since the moment of an object is defined by Eq. (12), the
moment of order zero refers to the object area:

m =
Z 1

�1
x

p
y

p
f (x , y )dxdy , (12)

where p, q = 0, 1, 2, . . ., p + q is the order of the moment,
x and y are pixel coordinates relative to an arbitrary order, and
f (x , y ) is the pixel luminosity. Furthermore, the coordinates of
the centroid in terms of moments are defined as follows:

x
0 = m10

m00
, y

0 = m01

m00
. (13)

Equation (14) defines invariant moments derived by comput-
ing the central moment µ involving the centroid. Thus, central
moments are invariant to image translations:

µ =
Z 1

�1

Z 1

�1
(x � x

0)p(y � y
0)q

f (x , y )dxdy . (14)

After we obtain scale invariance ⌘ by normalization of central
moments through Eq. (15),

⌘pq = µpq

µ
�
00

, � = (p + q + 2)/2, p + q = 2, 3, . . . . (15)

Finally, we compute the seven-moment invariants 81–87
introduced by Hu [45] through Eqs. (16)–(22). These values are
the seven features of Hu’s invariants, which remain unchanged
to image scaling, translation, and rotation:

81 = ⌘20 + ⌘02, (16)

82 = ⌘20 + ⌘2
02 + 4⌘2

11, (17)

83 = (⌘30 + 3⌘12)
2 + (3⌘21 + ⌘03)

2, (18)

84 = (⌘30 + ⌘12)
2 + (⌘21 + ⌘03)

2, (19)

85 = (⌘30 + 3⌘12) + (⌘30 + ⌘12)

⇥ [(⌘30 + ⌘12)
2)� 3(⌘21 + ⌘03)

2]

+ (3⌘21 � ⌘03)(⌘21 � ⌘03)

⇥ [3(⌘30 + ⌘12)
2 � (⌘21 + ⌘03)

2], (20)

86 = (⌘20 + ⌘02) + [(⌘30 + ⌘12)
2 � (⌘21 + ⌘03)

2]

+ 4⌘11(⌘30 � ⌘12)(⌘21 � ⌘03), (21)
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87 = (3⌘21 + ⌘03)(⌘30 + ⌘12) + [(⌘30 + ⌘12)
2 � 3(⌘21 + ⌘03)

2].

� (⌘30 � 3⌘12)(⌘21 � ⌘03)[3(⌘30 � ⌘12)
2 � (⌘21 � ⌘03)

2]
(22)

All features are scalar values, which are normalized in the
range [0,1] using a normalization type min-max for each fea-
ture. We do not consider any process of reduction in the selected
features, or geometric transformations from the images.

C. Classifiers

As mentioned in Section 1, we made the selection of classifiers
based on the requirement of using or not using data derived from
expert knowledge, which classically is managed by the classifier.
For this purpose, we distinguish the following classifiers.

1. Multilayer Perceptron

MLPs are a specific type of artificial neural network. These
nets are composed of basic computing units stacked in
multiple layers to form a feedforward network (input, hid-
den, and output layers). Each neuron receives an input
X m = {X m1, . . . , X mnF}, with X m 2 R

nF, and computes
and stores a weighted linear sum of the signal as in Eq. (23):

Om =
nFX

c m=1

we cm X mcm + bias, (23)

where we cm biases are the weights associated with the neuron.
Om from each neuron then passes through an activation func-
tion (AF), to supply the output transmitted by the neuron. In
this work, the backpropagation algorithm helps to train the net.
We consider two hidden layers: the first layer with 17 neurons
(number of features) and two neurons in the output layer. The
AF used is variable learning rate backpropagation, which is
given by the function traingdx in the MATLAB toolbox of deep
learning.

2. Support VectorMachine

A SVM is a kernel method that builds an optimal hyperplane
in the form of a decision surface that maximizes the separation
margin between the two classes in the data. Support vectors refer
to a small subset of the training observations used to support the
optimal location of the decision surface. In this work, a nonlin-
ear SVM with the discriminate hyperplane defined in Eq. (24) is
used:

f c (De ) =
nTaX

nd=1

↵ndTandKer(Dend, De ) + bi, (24)

where f c associates descriptors Dend to labels Tand for
the number of classes nTa . Training data are associated to
(Dend, Tand), K er is the kernel function (in this work a
Gaussian kernel), and Tand 2 {�1, 1}. The sign of the output
refers to the class membership of De .

In the first phase, the input data transform into a high-
dimensional feature space where the kernel is specified. After,

the optimization problem finds the optimal hyperplane to
classify the features into two classes.

3. Convolutional Neural Network

A CNN is a type of machine learning in which a model learns
to perform classification tasks directly from images, videos,
texts, or sounds. This learning takes place through the location
of patterns in images directly from the image data without
considering any knowledge or meaning about the image. LeNet
[46] and AlexNet [47] are CNNs used in this work because
they represent, respectively, a standard CNN and a CNN with
transfer learning.

The LeNet architecture used consists of four sets of convolu-
tional and pooling layers, followed by a flattening convolutional
layer, then two fully connected layers, and finally, a softmax clas-
sifier. The input for the net can be a grayscale or color image. The
fully connected softmax output layer is two possible values that
correspond to each class.

AlexNet is a pre-trained net that is eight layers deep and
requires an image input size of 227⇥ 227⇥ 3, where 3 is the
number of color channels. The last three layers of the net are
configured for 1000 classes. Thus, these layers are fined-tuned
for our problem of classification, replacing them with a fully
connected layer, a softmax layer, and a classification output
layer.

3. EXPERIMENTAL RESULTS AND DISCUSSION

All algorithms were executed on a standalone desktop computer.
We used a CPU from Intel Core i9- 7900X CPU 3.31 Ghz,

Fig. 7. Gaussian mixture distribution.

Fig. 8. Results of linear transformation to image (c) in
Fig. 2: (a) Lymphocyte cell, and (b) Lymphocyte cell after linear
transformation.
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Fig. 9. Input images for tests with CNNs.

Fig. 10. Leukemic and healthy cells.

Fig. 11. Results from image data augmentation: (a) Input image,
(b) Rotation, (c) Reflection, and (d) Translation.

64GB RAM, 222Gb hard drive, 64-bit Windows10 Enterprise
Edition operating system, graphics processing unit (GPU)
GeForceGTX 1080, and MATLAB R2018a.

The first stage is used to isolate the region of the cell nucleus
according to the method described in Section 2.A. Then,
the aim is to generate a probability distribution closest to the
histogram of each image. Estimation of the parameters in
Eq. (1) was calculated through 30 executions of Algorithm 1.
Figure 7 illustrates the correlation between the histogram of
input image v, and GMM p obtained particularly for image (c)
in Fig. 2.

As a last step, µi , �i , and Pi are obtained, and the values
for µ1 and �1 are used to compute a and b in Eq. (11). These
parameters belong to the leftmost mode in the image histogram,

Table 2. Results of Classification with CNNs Using
Original Images from ALL_IDB2

Num.

of

Exec.

Without Image Data

Augmentation

With Image Data

Augmentation

LeNet AlexNet LeNet AlexNet

Acc. Time(s) Acc. Time(s) Acc. Time(s) Acc. Time(s)

1 82.05 71.22 97.44 250.83 84.62 62.28 96.15 251.48
2 82.05 54.45 98.72 240.92 69.23 33.78 98.72 245.48
3 84.62 67.03 97.44 229.41 74.36 63.72 98.72 236.55
4 69.23 46.64 98.72 226.92 87.18 84.19 98.72 224.61
5 74.36 41.92 92.31 233.86 70.51 44.78 97.44 242.61
6 85.90 68.08 97.44 232.13 94.87 88.27 98.72 224.03
7 74.36 52.86 96.15 234.78 76.92 52.41 97.44 238.78
8 82.05 44.86 96.15 229.86 79.49 59.16 96.15 231.22
9 80.77 39.27 98.72 229.11 83.33 59.45 94.87 232.98
10 82.05 45.97 94.87 232.73 89.74 80.88 92.31 233.75
11 82.05 49.98 97.44 234.14 88.46 79.36 97.44 242.69
12 78.21 28.50 93.59 232.56 85.90 63.58 97.44 229.33
13 79.49 67.08 93.59 239.14 91.03 78.45 100 231.25
14 91.03 71.16 97.44 228.31 67.95 39.14 98.72 226.59
15 92.31 90.16 97.44 235.38 83.33 62.17 98.72 230.56
16 91.03 111.06 96.15 232.59 79.49 66.64 100.00 234.42
17 80.77 70.28 97.44 231.53 89.74 86.02 97.44 236.06
18 80.77 31.91 98.72 237.36 78.21 57.83 96.15 236.06
19 80.77 37.09 97.44 229.30 88.46 55.02 96.15 225.30
20 84.62 66.20 97.44 232.72 91.03 52.14 100.00 234.31
21 66.67 31.69 100.00 238.27 79.49 47.88 93.59 231.97
22 70.51 46.22 94.87 232.19 85.90 65.56 96.15 236.69
23 85.90 79.67 98.72 231.13 80.77 57.75 97.44 235.95
24 83.33 46.66 98.72 231.25 88.46 79.17 98.72 235.80
25 69.23 35.22 97.44 227.36 80.77 69.38 100.00 237.83
26 92.31 86.50 100.00 227.42 76.92 63.33 100.00 237.83
27 79.49 64.53 97.44 230.88 83.33 82.09 97.44 233.16
28 84.62 52.86 97.44 240.66 83.33 44.73 100.00 233.88
29 80.77 45.38 97.44 247.23 97.44 62.48 98.72 236.70
30 88.46 79.81 94.87 241.03 84.62 41.92 98.72 231.58
Average 81.32 57.48 97.05 234.03 83.16 62.78 97.74 234.70
� 2 ±44.85 ±3.42 ±51.32 ±3.70
� ±6.69 ±1.84 ±7.16 ±1.92
Outlier
detected?

No No No No

Critical
value of
Z:

2.90 2.90 2.90 2.90

i.e., the distribution of gray levels of the darker image region
(the nucleus). Hence, an output image after applying the linear
transformation defined in Eq. (10) is obtained [see Fig. 8(b)].
Then, as a result of the post-processing described in Section 2.B,
we obtain a binary image for the extraction of features used later
by the classifiers SVM and MLP. An image with post-processing
is illustrated on the right side in Fig. 9.

Inputs for CNNs include grayscale and binary images from
the isolated nucleus and color images (original images from
ALL_IDB2), respectively, for each test. The first image set refers
to images without post-processing, as shown in the image on the
left in Fig. 9.

In the following stage, we assess the influence of using expert
knowledge by using the classifiers described in Section 2.C.
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Table 3. Results of Classification with CNNs Using
Data Augmentation with ALL_IDB2

Num.

of.

Exec.

Images without

Post-Processing

Images with

Post-Processing

LeNet AlexNet LeNet AlexNet

Acc. Time(s) Acc. Time(s) Acc. Time(s) Acc. Time(s)

1 66.67 56.45 92.31 271.63 58.97 63.44 85.90 251.23
2 75.64 57.02 92.31 271.83 53.85 49.47 92.31 249.13
3 73.08 56.08 89.74 259.75 57.69 34.86 89.74 238.31
4 74.36 71.03 87.18 256.72 65.38 69.50 93.59 253.14
5 76.92 62.38 89.74 266.78 44.87 52.23 88.46 246.19
6 66.67 42.20 87.18 263.55 52.56 43.50 85.90 242.05
7 70.51 54.50 85.90 258.45 52.56 34.67 92.31 245.14
8 71.79 51.98 91.03 261.92 47.44 41.27 88.46 237.70
9 62.82 39.47 88.46 261.86 48.72 52.50 88.46 246.30
10 80.77 63.23 84.62 258.38 51.28 34.09 85.90 243.38
11 56.41 54.03 88.46 262.64 52.56 52.14 85.90 241.31
12 67.95 47.59 91.03 249.52 60.26 51.64 85.90 240.88
13 71.79 60.56 92.31 258.97 56.41 33.14 89.74 240.78
14 67.95 38.72 88.46 264.14 62.82 48.81 92.31 244.55
15 64.10 52.88 87.18 263.48 51.28 58.64 84.62 232.00
16 78.21 61.39 88.46 259.63 57.69 36.58 91.03 237.41
17 76.92 66.16 91.03 263.55 61.54 70.06 87.18 230.63
18 73.08 46.66 92.31 264.45 53.85 42.50 87.18 229.81
19 66.67 50.94 85.90 260.53 53.85 53.28 83.33 237.08
20 60.26 45.02 88.46 259.67 60.26 46.28 94.87 233.48
21 73.08 44.39 92.31 264.17 51.28 63.89 85.90 236.11
22 61.54 33.14 85.90 259.95 67.95 51.52 89.74 240.80
23 76.92 47.44 94.87 258.59 57.69 30.47 89.74 234.20
24 67.95 64.97 91.03 263.64 56.41 47.91 92.31 229.22
25 65.38 66.66 89.74 262.73 60.26 66.95 92.31 234.64
26 67.95 43.03 89.74 261.48 50.00 37.63 87.18 232.81
27 71.79 35.44 91.03 260.66 55.13 32.92 84.62 237.98
28 70.51 53.78 91.03 258.55 69.23 55.98 91.03 235.16
29 70.51 45.36 89.74 254.39 55.13 55.38 89.74 236.28
30 50.00 44.34 83.33 268.34 57.69 55.73 91.03 237.22
Average 69.27 51.89 89.36 261.67 56.15 48.90 88.89 239.26
� 2 ±45.17 ±7.05 ±33.15 ±9.11
� ±6.72 ±2.65 ±5.75 ±3.01
Outlier
detected?

No No No No

Critical
value of
Z:

2.90 2.90 2.90 2.90

Original images (in color) have distinctive background tonality
for each class: leukemic and healthy cells are noticeably dif-
ferent. Color is an essential trait for the extraction of features
with CNNs that influences the classification task, and it is not
desirable because clearly the aim is to assess the importance
of the use of expert knowledge to recognize the cell of interest
and not other items in the image background. Figure 10 shows
leukemic cells in the first row and healthy cells in the second row.
In the second row, a more intense reddish color can be seen in
the background than in the images in the first row.

Experiments with CNNs include tests with and without
image data augmentation; this set of transformations for image
augmentation contains rotation, translation, and reflection.
Data augmentation prevents network overfitting, as it helps

Table 4. Results of Classification with CNNs without
Data Augmentation with ALL_IDB2

Num.

of.

Exec.

Images without

Post-Processing

Images with

Post-Processing

LeNet AlexNet LeNet AlexNet

Acc. Time(s) Acc. Time(s) Acc. Time(s) Acc. Time(s)

1 70.51 99.67 89.74 260.53 57.69 54.52 74.36 262.61
2 65.38 36.50 92.31 253.77 50.00 60.56 69.23 264.02
3 83.33 50.58 91.03 246.89 50.00 46.48 84.62 253.14
4 75.64 39.00 91.03 250.27 51.28 35.09 75.64 249.59
5 78.21 40.94 88.46 260.77 50.00 48.08 79.49 257.95
6 76.92 84.27 87.18 247.25 56.41 42.38 74.36 246.11
7 69.23 37.03 92.31 251.38 50.00 68.38 79.49 249.98
8 76.92 36.13 87.18 247.53 51.28 57.28 73.08 247.19
9 52.56 35.16 89.74 250.42 47.44 84.69 82.05 251.78
10 66.67 30.63 92.31 246.02 51.28 50.27 75.64 251.22
11 82.05 72.44 93.59 244.22 53.85 43.91 71.79 248.02
12 76.92 75.81 85.90 245.48 48.72 41.33 84.62 246.05
13 73.08 46.16 94.87 246.22 51.28 37.55 83.33 252.30
14 66.67 47.91 91.03 251.28 50.00 63.38 73.08 252.39
15 71.79 32.06 82.05 247.91 53.85 54.73 82.05 247.78
16 71.79 43.02 91.03 247.30 50.00 35.05 79.49 245.61
17 85.90 49.06 93.59 246.58 60.26 35.23 78.21 248.75
18 73.08 47.78 94.87 244.78 50.00 44.64 76.92 254.14
19 83.33 39.28 92.31 248.88 57.69 39.16 79.49 254.92
20 74.36 44.34 91.03 248.75 57.69 65.95 80.77 253.56
21 60.26 46.66 94.87 247.80 50.00 45.23 76.92 252.02
22 51.28 35.66 87.18 249.44 50.00 68.52 75.64 249.56
23 53.85 37.27 91.03 251.20 51.28 56.91 76.92 249.72
24 76.92 41.98 83.33 250.63 53.85 57.36 79.49 259.58
25 65.38 62.38 85.90 252.25 50.00 39.84 74.36 255.80
26 73.08 42.28 93.59 247.48 50.00 49.33 80.77 252.41
27 75.64 44.61 80.77 247.44 50.00 38.50 79.49 253.28
28 71.79 57.80 92.31 246.94 69.23 54.91 88.46 255.14
29 71.79 36.08 91.03 244.22 48.72 29.06 79.49 258.34
30 79.49 49.17 84.62 245.19 50.00 33.97 74.36 251.02
Average 71.29 48.05 89.87 248.96 52.39 49.43 78.12 252.47
� 2 ±76.06 ±14.66 ±20.15 ±18.13
� ±8.72 ±3.82 ±4.48 ±4.25
Outlier
detected?

No No No No

Critical
value of
Z:

2.90 2.90 2.90 2.90

with memorizing traits of the training images. We considered
rotation with an angle between 0� and 360�, and for translation,
a distance within the interval of [�30, 30] measured in pixels.
Values for angle and distance in the transformations were picked
randomly from a continuous uniform distribution within a
specified interval. Nevertheless, only the horizontal and vertical
reflections were used in the final test because images are mean-
ingfully affected by rotation and translation, as can be seen in
Fig. 11.

On the other hand, because the input image for the pre-
trained CNN AlexNet is an RGB color image, in the test with
grayscale and binary images, these were duplicated over the three
channels.
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Table 5. Results of Classification with AlexNet Using
DATA Augmentation with ALL_IDB1

No.

Execution Accuracy Time (s)

No.

Execution Accuracy Time (s)

1 93.94 351.16 16 100.00 341.14
2 93.94 343.88 17 96.67 339.11
3 100 341.27 18 100.00 335.78
4 100 340.23 19 100.00 341.44
5 100.00 338.34 20 100.00 343.56
6 100.00 341.84 21 100.00 339.95
7 96.67 341.36 22 100.00 339.95
8 100.00 337.31 23 100.00 339.39
9 96.97 342.84 24 100.00 339.28
10 100.00 344.05 25 100.00 338.02
11 100.00 340.83 26 100.00 339.05
12 100.00 340.33 27 100.00 339.92
13 100.00 342.47 28 96.67 341.59
14 100.00 338.30 29 100.00 335.81
15 100.00 340.41 30 100.00 341.27
Average: 99.19 340.85
� 2 ±3.12
� ±1.77
Outlier detected? Yes
Critical value of Z: 2.90

Because of the small dataset size, we realize 30 executions for
each experiment, with different training and test sets for each
implementation. Thus, to validate the method, the accuracy
is measured with the average of these executions. In all exper-
iments, we use 70% of data for training and the remainder
for testing. This approach, known as train/split, was designed
to avoid strongly biased yield estimates even with small sam-
ple sizes and to produce robust and unbiased performance
estimates, regardless of sample size [48].

We consider the Grubbs statistical method for outlier detec-
tion [49]. We run the experiments using Grubbs’ test from the
results of every experiment, with a significance level of 0.05
(two-sided). Values of average, variance, standard deviation,
outliers detected, and critical value Z are reported in Tables 2–6.
According to the results, there are no outliers, except in the
experiment using ALL_IDB1 and AlexNet with image data aug-
mentation (Table 5). Nevertheless, this is not significant because
only one outlier was detected. Moreover, in both experiments
with the original images using ALL_IDB1 and ALL_IDB2, the
results are similar: 99.19 and 97.74, respectively, meaning the
results are inside the expected range even though ALL_IDB1 is
unbalanced, with fewer images. All tables provide also average
time in seconds for the experiments.

Results of experiments with CNNs for three image sets—
original, without post-processing (grayscale), and with
post-processing (binary)—using data augmentation and
without data augmentation are presented, respectively, in
Tables 2–4. Note that tests with CNNs–AlexNet using image
data augmentation achieved the best performance.

Also, results for classifiers MLP and SVM are in Table 6,
using as input the 17 extracted features from the post-processing
applied to the nucleus images. In order to give a summary of
outcomes from classifiers, Table 7 provides the best average
results for each set of experiments. In contrast, expected results

Table 6. Results for Classification with MLP and SVM
Using the 17 Features Extracted from ALL_IDB2

MLP SVM

No. Exec. Accuracy Time(s) Accuracy Time(s)

1 99.46 2.89 97.00 0.63
2 99.46 0.55 100.00 0.07
3 99.85 0.50 97.00 0.07
4 99.62 0.51 100.00 0.02
5 99.54 0.52 100.00 0.11
6 99.46 0.50 100.00 0.01
7 99.62 0.53 99.00 0.01
8 99.69 0.59 99.00 0.01
9 99.62 0.49 99.00 0.01
10 99.46 0.51 99.00 0.01
11 99.62 0.50 99.00 0.01
12 99.62 0.56 100.00 0.01
13 99.69 0.53 99.00 0.01
14 99.77 0.51 100.00 0.01
15 99.69 0.50 100.00 0.01
16 99.69 0.50 100.00 0.01
17 99.69 0.50 97.00 0.01
18 99.69 0.48 100.00 0.01
19 99.54 0.47 100.00 0.01
20 99.69 0.48 99.00 0.01
21 99.54 0.49 99.00 0.01
22 99.54 0.49 99.00 0.01
23 99.85 0.49 100.00 0.01
24 99.69 0.46 97.00 0.01
25 99.69 0.52 99.00 0.01
26 99.77 0.61 99.00 0.01
27 99.62 0.47 100.00 0.01
28 99.54 0.48 100.00 0.01
29 99.62 0.48 100.00 0.01
30 99.62 0.48 97.00 0.01
Average 99.63 0.59 99.00 0.04
� 2 ±0.016 ±0.00
� ±0.11 ±0.01
Outlier
detected?

No No

Critical value
of Z:

2.90 2.90

with color images are better than the other sets of images due to
characteristics of color background. AlexNet reaches 97.74%
in color images and 89.87% of accuracy using images of cell
nuclei without post-processing, while LeNet obtains 71.79%.
Moreover, the use of image data augmentation favored the
results of both CNNs in tests with binary images, while in
tests without post-processing, the changes are not meaningful,
obtaining an absolute-accuracy difference of 2.52 and 0.51 for
LeNet and AlexNet, respectively. On the other hand, in tests
with the classifiers MLP and SVM, the best results are obtained
with MLP reaching 99.63% accuracy, while for SVM, 99.00%,
both slightly better than AlexNet.

Finally, Fig. 12 shows a graphical comparison between
processing times for executions with the best classifiers. Notice
that time consumed for the classifiers that use expert knowledge
is meaningfully lower than for those that do not use it. Despite
GPU deep learning, parallel computing is used to speed up
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Table 7. Summary of Outcomes from Classification
with CNNs, MLP, and SVM Applied to ALL_IDB2

With Data

Augmentation

Without Data

Augmentation

Classifier

Used

Original

images

Imgs.

without

post-

proc.

Imgs.

with

post-

proc.

Original

images

Imgs.

without

post-

proc.

Imgs.

with

post-

proc.

LeNet 83.16 69.27 56.15 81.32 71.79 52.39
AlexNet 97.74 89.36 88.89 97.05 89.87 78.12

Features extracted from images with post-processing
MLP 99.63
SVM 99.00

Fig. 12. Graphical representation of times best results for each clas-
sifier: (a) Time for classifiers that used expert knowledge as input data,
and (b) Time for classifiers thad did not use expert knowledge as input
data.

the computations during the training of CNNs. In Table 8, a
summary of times (in seconds) registered for results of Table 7
is presented. Experiments with AlexNet depict that image data
augmentation is time consuming when using images without
post-processing, and the opposite occurs when binary images
are used. In contrast, with original images, there are no sig-
nificant changes with the use of image data augmentation. In
experiments with LeNet, the use of image data augmentation
and the type of image used as input do not provoke great changes
in the time used since the difference is of 3.84 when using
images without post-processing, and 0.53 for binary images. In
summary, it is worth mentioning that classifiers that use expert
knowledge have lower time consumption.

Table 8. Outcomes of Time from Classification with
CNNs, MLP, and SVM Applied to ALL_IDB2

With Data

Augmentation

Without Data

Augmentation

Classifier

Used

Original

images

Imgs.

without

post-

proc.

Imgs.

with

post-

proc.

Original

images

Imgs.

without

post-

proc.

Imgs.

with

post-

proc.

LeNet 62.78 51.89 48.90 57.48 48.05 49.43
AlexNet 234.70 261.67 239.26 234.03 248.96 252.47

Features extracted from images with post-processing
MLP 0.59
SVM 0.04

4. CONCLUSION

We present a technique to derive expert knowledge for leukemic
cell recognition. The method consists of a GMM, an evolution-
ary algorithm, and techniques of image processing, which allow
us to obtain the ROI within an image for a posteriori recognition,
thus encapsulating appropriate expert knowledge. Experiments
demonstrate that the use of this expert knowledge is useful to
approach visual recognition of blood cells with hematological
diseases such as leukemia. In this regard, the use of standard
techniques of image processing provides a set of descriptors
that in combination with classifiers such as SVMs and MLPs
surpasses the accuracy and performance of popular (last gen-
eration) CNNs such as LeNet and AlexNet. Although results
are similar for MLP and AlexNet (using transfer learning and
image data augmentation), in the latter, a reduction in image
size is required. Moreover, we obtain the results using images
from ALL_IDB2, in which the characteristics of the image
background influence the performance of the net, as mentioned
in Section 3. Thus, from experiments with ALL_IDB1 and
ALL_IDB2, we note the critical problem of CNNs of solving
the problem without selecting the ROI, which is undesirable
since experts need to identify the disease based on the features of
the nucleus cell.

Moreover, the proposed method derives this from expert
knowledge; as a result, it is fully explainable since the extraction
of features follows a logical process using human reasoning for
the recognition of leukemic cells, in contrast to CNNs, where
the process to derive the extraction of features is unknown,
which is one main drawback of deep learning. This work
demonstrates through experimental results with datasets
ALL_IDB1 and ALL_IDB2 that deep learning correctly classi-
fies both problems, raising the question of knowing under which
criteria the system applies for this recognition. It is evident that
the traits used by a human expert focusing only on deep learning
techniques cannot easily incorporate expert knowledge. In
brief, the results of these models go beyond human perception,
i.e., they are models incapable of providing explainable rea-
soning regarding the prediction made. Instead, by using expert
knowledge, more accurate and robust explainable models can
be obtained, which in the future will allow the creation of better
learning and interpretation techniques for solutions to problems
in various fields of knowledge.
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Finally, in future work, we would like to expand the proposed
approach to other fields while considering solutions using
expert knowledge, low computational requirements, excellent
performance, and symbolic learning.
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