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Self-localization of an uncalibrated camera
through invariant properties and coded target
location
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This paper recalls one of the most critical problems for the area of computer vision, the automatic location of
a single camera. Today, several robotic devices rely on technologies other than visual information to perform
self-localization. An artificial optical system will significantly benefit from knowing its location within a three-
dimensional world since this is a crucial step to approach other complex tasks. In this paper, we will show how
to compute the position of the camera through an uncalibrated method making use of projective properties, the
projection model of the camera, and some reference points. We introduce a simple yet powerful way to detect coded
targets in photographic images. Then, we describe an uncalibrated approach used to identify the location of a cam-
era in three-dimensional space. The experiments carried out confirm the validity of our proposal. © 2020 Optical
Society of America

https://doi.org/10.1364/AO.385841

1. INTRODUCTION

The main task for robots to move autonomously in the three-
dimensional world is to know its location concerning objects
around it. Throughout the years, techniques have been devel-
oped to calculate the position of robots based mainly on active
sensors such as GPS, sonar, laser, and omnidirectional cameras
[1–3]. The image-based camera location problem remains a
critical factor in vision-based robotics [4]. The open problem
of visual computing is to achieve a solution to the quest of pro-
viding robotic systems with an artificial vision system; however,
most robots come with integrated cameras, usually only one,
whose resolution is not the best, and with a simple lens. If we
could calculate the location of such cameras, we could know not
only where the robot was but how to compute a trajectory in
three-dimensional space. Nevertheless, the automatic location
of a camera can be a very challenging problem, especially when
we want to use only a single camera.

The calibration matrix is part of the techniques commonly
used for the auto-location of the optical center. To calibrate the
camera, we extract some point locations accurately from a pho-
tograph taken on the scene. The projection matrix is calculated
using the inner parameters of the camera, which transforms a

point in the scene into the projected point in the photograph.
This method can achieve very high accuracy but is vulnerable to
failures when the camera changes focus [5,6]. If the position of
the camera reorientates, a new calibration is needed.

The problem of indoor localization of a mobile platform
based on monocular vision and coding images is an open
research area. In Ref. [7], the authors describe a system using a
set of coding graphics in combination with resection models to
obtain robust positioning results with high accuracy. However,
their method relies on collinearity equations and calibration
of exterior orientation without an accurate estimation of the
camera parameters. Li et al. [8] carried out an implementation
using stereo camera systems. These devices are usually quite
expensive and delicate in handling, and their methodology
is computationally costly. Also, it is difficult to manage and
implement at the moment of working with real-time systems. In
this paper, the proposed method does not require calibration; in
this way, we obtain three-dimensional camera locations without
knowing any information about the parameters of the cam-
era or even the Euclidean position of the objects in the scene.
An earlier proposal was studied by Trip [9] for the case of the
projective plane. Subsequently, in Refs. [10–12], the study was
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extended to three-dimensional projective space using standard
projective geometry. In this paper, we revisited the problem
using Grassman–Cayley algebra and provide a simple method
to compute the camera location. Another contribution in this
work is a fast technique for automatic detection and recognition
of circular coded targets inspired by previous research. Coded
targets are specialized marks whose purpose is to facilitate the
process of accurate point location in images used in camera
calibration or similar tasks [13,14].

2. METHODOLOGY

We divide the proposed method into two main sections. In
the first part, we propose a coded-target recognition tech-
nique to detect some reference points automatically for relative
positioning, and the second part describes the method using
Grassman–Cayley algebra to calculate the position of the cam-
era using six reference points placed in a particular geometric
configuration.

A. Detection of Reference Points

The design and recognition of artificial landmarks for reliable
indoor self-localization of mobile robots is an active research
area [15–17]. In this research, we use circular coded targets to
identify our reference points. Note that each target has a circle in
the center surrounded by a unique coded circular band. There
are two main challenges to solve at the moment of identifying
the coded target. First, given an image with the targets captured
with a camera, the problem is how to identify single targets
despite the background image. Second, we need to devise a
method that identifies the ID of the coded target automatically.

We develop a technique based on [18], which is simplified
here using only the ring code information by extracting the
centroid of each part, and make representations with the angles
formed by the centroids and the center of the coded target;
see Fig. 1. Binary image processing is the first step to get rid of
unnecessary information on the image; we use Otsu’s method
[19] to find the optimal threshold value to binarize the image.
Areas of the image above the threshold become candidate tar-
gets, while all other regions are discarded as background objects
if they are too large, or classified as noise if too small. Once locat-
ing the target, we use the Hough transform [20], a technique
used to find instances of objects within a specific class of shapes,
e.g., circles. This method also returns the coordinates of the
centroid of each detected circle. When the system detects con-
centric circles, we consider that we have found a coded target.
Then, we extract a local image window around each target. The
size of the image window should be slightly larger than the ratio
of the circular target, as shown in Fig. 1(a).

The images captured by the camera often present geometric
distortions due to the affine transformation performed by the
camera. As we do not know the orientation of the camera for
the targets, the photograph will not always be taken from the
front, and this produces an ellipse shape of the circular targets.
After proper coordinate transformation, i.e., an inverse affine
transformation, we may obtain the reconstructed coded target.
Then, we remove the inner circle [Fig. 1(b)], and the target’s
recognition is encoded through the ring code of the target.

Fig. 1. (a) Coded target recognized after applying Otsu’s binariza-
tion, (b) coded part of the target, and (c) centroids of each segment of
the coded target.

As the number of targets is small, we make a database with the
measures of the angles using the centroids of each white object
in the final figure to the horizontal [Fig. 1(c)]. A centroid can be
calculated by the arithmetic mean position of all pixels within
a segmented area. For each photograph, we measure the target
angles detected in the image and match the information with
the database. Nevertheless, the pictures are not the same even
if taken in the same way, so we give a tolerance of 5% for each
angle. If there is no match with any of the points, we omit this
point and go to the next coded target. Note that these coded
targets are handmade and therefore are very different from each
other. In general, our proposed method should work with this
kind of target since most targets are simple.

After this image processing, we finally get the ID of each
target so we can use the coordinates provided by the calibration
board’s manufacturer (measured in mm) as well as the coor-
dinates in the plane of the picture (measured in pixels). We
perform this procedure until we identify six targets and apply
the following procedure to calculate the line of sight.

B. Uncalibrated Method Based on the Chasles
Theorem

The method presented here has a geometric–algebraic approach.
The algebraic approach is preferred to get an easier implemen-
tation within a computer system. Through Grassman–Cayley,
we can represent lines in matrix form, which makes it easier
to calculate it, in this case, with the Plücker coordinates. The
geometric approach consists of using projective properties
associated with the projection model of the camera. We make a
configuration according to some projective geometry theorems
in such a way as to take advantage of some properties that are
invariant under projective transformations. Next, the method
based on the Chasles theorem [21] and the conservation of
cross-ratio in the projective transformations are given along with
some considerations to take into account for this method:

• The pinhole camera model is used to model the transfor-
mation made by the camera when taking a photograph.

• We need to know at least the coordinates of six points in
three-dimensional space (real world) and their corresponding
projections in the photograph. We detect the coordinates of
image points calculated with the image processing method
described in Section 2.A (note that we are using Euclidean coor-
dinates through the calibration grid, but this does not restrict the
method since the formulation uses the projective space).
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• This method uses relative positioning. In other words, we
calculate the projection center according to the projective coor-
dinate system from the reference points; in this case, the coordi-
nate system is Euclidean.

1. CameraModel

As mention above, this method employs the pinhole camera
model where each point X in 3D space is projected through a
line that passes through the aperture in the camera. This line is
known as the line of sight of point X, and the camera aperture
where all lines of sight intersect is known as the center of projec-

tion of the camera. This is the point that we want to identify, and
the obtained results correspond to the coordinates of the camera
in the three-dimensional world.

The camera performs a projective transformation from P3 to
P2. This transformation is expressed as a linear transformation
in homogeneous coordinates as shown in Eq. (1):

U = P X, (1)

where U = [u1, u2, 1]T is the vector of homogeneous coordi-
nates of a point in the photo, X = [x1, x2, x3, 1]T is the vector
of homogeneous coordinates of a point in space, and P is the
matrix associated with the projective transformation.

2. CameraProjectionCenter

We state the problem of calculating the projection center of a
photographic camera as follows.

Objective: calculate the projection center of a photographic
camera.

Input: a set of six points: {X[1], X[2], X[3], X[4], X[5], and
X[6] 2 P3}; and its corresponding projection points in a
photograph: {U[1], U[2], U[3], U[4], U[5], and U[6] 2 P2}.

Output: coordinates of the center of projection of the camera
X[0] 2R3.

We apply the following approach to calculate the position of
the camera. Project all points found in the photograph towards
the optical center of the photographic camera. Then, the point
where all lines of sight intersect corresponds to the center of pro-
jection of the photographic camera. Hence, the approach states
that to calculate the center of projection, we have to calculate the
intersection of at least two lines of sight. So, we summarize the
method in the following steps:

• Calculate the line of sight of point X[1].
• Calculate the line of sight of point X[2].
• Calculate the intersection point of both lines of sight.

The next subsection presents the method to calculate a line of
sight.

3. Line of Sight of a Point

Let X[1] be a point ofP2, and let U[1] be its projection in the pho-
tograph; then, we want to calculate the line of sight of point X[1].

We need at least two known points to define any line. In this
case, point X[1] will be the first reference, and the second will be
any other point lying in the same line between the center of pro-
jection of the camera and point X[1].

Fig. 2. Geometric configuration used to calculate the coordinates of
the second point. Yellow points represent the known points given a pri-

ori, and red marks are those we want to know.

Something important to emphasize is that we will find the
missing point using the information on the photo and a geo-
metric configuration that takes advantage of some projective
theorems. Figure 2 shows a graphic description of the proposed
geometric configuration.

First we choose five of the six known points: X[1], X[2], X[3],
X[4], and X[5], and their corresponding projection points in the
photograph: U[1], U[2], U[3], U[4], and U[5]. Any four of these
points must be linearly independent. Hence, they must not
belong to the same plane. This ensures that points X[1], X[2],
X[3], X[4], and X[5] form a base ofP3.

We use these points to create a pencil of planes: each plane
formed by the union of the line of sight and each of the other
known points X[2], X[3], X[4], and X[5].

Then, we set an imaginary plane 5[0] with Eq. (2), which
intersects the pencil of planes, which in turn creates a pencil of
lines with the intersection of each plane with 5[0]. The vertex of
this pencil of lines is point X[7], and this is the second point that
will define our line of sight:

5(0) = [0, 0, 1, �↵]T . (2)

We extrapolate lines created from point X[1] to each one of the
other points until they reach plane 5[0]. Using the pencil of lines
created on 5[0], we can calculate the intersection with the lines
corresponding to the other points, generating X[8], X[9], X[10],
and X[11].

The next step to calculate the coordinates of point X[7] con-
sists of using some projective properties to relate plane 5[0] to
photo plane 5[1]. This procedure consists of calculating the
cross-ratio between the points in the photograph, and a pair
of conics generated in plane 5[0] with the known points X[8],
X[9], X[10], and X[11] and the missing point X[7]. We explain the
details of this procedure next.

According to the theorem of cross-ratio conservation, the
cross-ratio is invariant under any projective transformation.
Thus, the cross-ratio of the pencil of lines formed in the pho-
tograph by points U[1] to U[5] will be the same cross-ratio of
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Fig. 3. Plane 5[0]: conic Q1 is defined by the points X[8], X[9], X[10],
X[11]; and conic Q2 is defined by the points X[8], X[9], X[10], X[12]. Point
X[7] is the point where conics meet.

the pencil of planes, and the same cross-ratio of the pencil of
lines in 5[0]. We calculate the cross-ratio of the points in the
photograph using Eq. (3):

�1 =
��U(1)U(2)U(4)

�� ��U(1)U(3)U(5)
��

��U(1)U(2)U(5)
�� ��U(1)U(3)U(4)

�� . (3)

According to the Chasles theorem [21], if we have a set of
points that share a cross-ratio, the vertex of the pencil of lines
formed by these points will lie on a conic Q1 that passes through
all the points. By conic, we mean any curve obtained as the

Fig. 4. AICON 3D Systems GMbH calibration board.

Table 1. Point Locations Obtained from the Pictures
(pixels)

U V

1 29.2073 ± 0.1924 243.8462 ± 0.3371
2 364.2762 ± 0.3558 48.7074 ± 0.4819
3 708.3291 ± 0.8124 241.2942 ± 0.5475
4 288.8615 ± 0.2723 28.1610 ± 0.4967
5 227.7714 ± 0.2759 242.9665 ± 0.2722
6 718.6748 ± 0.6818 460.2399 ± 0.3470

Fig. 5. Plane 50 where conics meet, calculated for the image in
Fig. 4.

intersection of a cone with a plane, such as an ellipse, hyperbola,
or parabola. Thus, all points that satisfy this relationship of
cross-ratio also lies in conic Q1. We need to find out which one
of them is the vertex of the pencil. For this, we use the remaining

Table 2. Camera Location in 3D Space (mm)

Num X Y Z

1 622.2778 662.6166 1092.0335
2 623.5819 662.2746 1090.2416
3 623.0528 662.4133 1090.9680
4 616.6402 652.6795 1029.7691
5 640.3290 666.0873 1117.5522
6 631.6202 673.7676 1050.4442
7 615.1859 681.7467 1023.2794
8 653.7578 663.2008 1084.2768
9 640.8150 666.4067 1119.6247
10 649.8965 648.5087 1140.2568
11 637.3536 627.2716 1214.0029
12 657.3513 664.2196 1089.5548
13 640.6168 666.2764 1118.7794
14 642.8413 689.8115 994.8887
15 669.3052 638.5945 1174.1453
16 655.8245 663.7867 1087.3126
17 648.18012 671.2482 1151.0446
18 622.5441 660.7908 1095.3794
19 625.2033 661.1222 1097.1414
20 623.6545 660.9347 1096.1445
21 641.7108 665.4089 1119.9518
22 626.1723 665.9782 1077.4168
23 620.3564 669.0393 1067.7694
24 620.9494 653.9010 1036.0973
25 640.4023 665.7748 1121.9022
26 631.6046 657.8524 1108.3184
27 627.4130 651.6987 1128.4809
28 622.0105 654.2018 1037.6556
29 640.9202 665.6299 1121.1302
30 630.0178 671.4766 1058.3774
Mean 634.7196 662.1573 1094.4647
Std Dev 13.6882 11.6284 46.0239
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Fig. 6. Self-localization proposal for indoor robot localization using artificial visual landmarks.

known point X[6] and ignore any of the other points, to form
new sets of pencil-of-planes, pencil-of-lines, and a new conic, as
shown in Fig. 3.

Next, we calculate the intersection between conics Q1 and
Q2 whose coordinates define point X[7]. The remaining steps
consist of calculating another line of sight, and the intersection
of these lines is the projection center of the camera; in other
words, the position of the camera (in our case, Euclidean) in the
chosen coordinate system.

3. EXPERIMENTS

In this experiment, we use an AICON 3D system GMbH cali-
bration board, a flat panel of carbon fibers with reflective targets
with known coordinates provided by the manufacturer; the grid
is shown in Fig. 4. Some of the targets are coded, so we can recog-
nize a specific point. For this problem, we use only coded targets
as reference points.

Targets are in two different planes that have a separation of
200 mm. Some of them are at the level of the panel, and five of
them are suspended on poles over the flat panel, ensuring that we
are using points in different planes. With the method described
in Section A, we successfully identify six reference points and
therefore the coordinate given in pixels in the picture; see
Table 1. We take photographs with a Pulnix TM-9701d camera
with a Fujinon, HF16A-2M1, of focal length f = 16 mm.

Table 3. Point Locations Obtained with the NAO
Robot (pixels)

U V

1 560.7333 ± 0.3407 424.5333 ± 0.3924
2 547.5333 ± 0.2249 326.2667 ± 0.2537
3 452.8500 ± 0.0.2980 335.0333 ± 0.1269
4 343.9833 ± 0.0913 98.5500 ± 0.2013
5 298.2667 ± 0.2537 106.5500 ± 0.2403
6 252.8500 ± 0.3693 110.4900 ± 0.1647

We observe in Fig. 5 the lines of sight for each point in the
image, as well as the conics formed on plane 5[0]. As we can
appreciate, the conics formed in this plane correspond to a
parabola and a hyperbola. We repeat the experiment with 30
images of the calibration grid shown in Fig. 4. Table 2 shows
the average errors and standard deviation on each axis of the
calculated optical center. As we can observe from the results,
the proposed method for coded target recognition works, and
the accuracy is good enough considering robotics tasks.

4. TESTING THE PROPOSAL IN THE REAL
WORLD

In this section, we address the localization problem for a human-
oid robot in an indoor environment with the proposed method.
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Table 4. Comparison Between Calibrated and
Uncalibrated Methods

Faugeras–Toscani Proposed Method

X Y Z X Y Z

1 64.65 61.42 �166.38 76.87 52.86 �170.68
2 58.65 53.12 �147.95 81.75 59.76 �180.75
3 91.33 68.61 �277.31 87.72 37.98 �192.83
4 77.34 63.75 �219.29 92.55 54.59 �202.84
5 61.68 55.55 �160.74 81.99 51.70 �181.26
6 48.82 50.64 �111.12 76.02 43.04 �169.52
7 68.62 62.52 �193.40 84.97 47.69 �188.74
8 71.60 60.53 �198.60 83.32 51.82 �183.98
9 58.22 53.86 �145.49 81.54 69.05 �180.13
10 61.85 54.70 �166.78 82.12 64.74 �181.83
11 58.65 53.12 �147.95 81.75 42.81 �180.38
12 72.00 60.35 �199.49 83.27 66.15 �183.73
13 49.41 48.97 �117.96 77.30 53.86 �172.24
14 58.65 53.12 �147.95 81.75 49.66 �180.38
15 69.84 61.90 �193.02 82.78 53.80 �183.48
16 50.14 47.97 �116.28 76.74 48.91 �169.98
17 58.34 55.64 �145.06 81.29 49.34 �180.01
18 50.23 49.13 �118.12 77.51 57.93 �172.22
19 65.41 58.75 �177.35 82.31 57.50 �182.46
20 54.21 52.32 �124.89 80.48 57.54 �177.69
21 62.28 54.76 �166.74 82.23 53.57 �181.84
22 79.33 66.41 �224.55 86.28 43.57 �190.09
23 67.36 59.69 �175.86 82.63 53.82 �182.24
24 66.02 57.91 �180.81 82.83 58.68 �182.72
25 51.21 48.61 �120.67 77.30 52.60 �171.28
26 67.37 57.82 �180.83 82.72 55.51 �182.44
27 70.85 61.97 �192.04 83.02 53.87 �183.45
28 67.06 59.44 �182.53 85.20 48.38 �188.23
29 63.13 54.82 �165.77 82.47 51.56 �181.81
30 59.95 52.30 �148.71 81.48 45.81 �180.66
Mean 63.47 56.66 �167.12 82.01 52.94 �181.33
Std Dev 9.61 5.39 37.09 3.45 6.92 7.12

NAO (pronounced now) is the name of a humanoid robot
dedicated to research, education, and entertainment purposes
that we use in the experiments. Figure 6 illustrates the setup
where multiple markers placed on the hall at the EvoVisión
laboratory feed the calibrated and uncalibrated approaches. The
application of artificial landmarks for camera robot localization
has several advantages, mainly for the case of known environ-
ments. It is easy to design landmark recognition algorithms with
information about the position of each coded target. Also, such
a strategy avoids problems of historical localization data, and
it does not have the accumulative error of markerless systems.
This section includes a comparison with the calibrated method
of Faugeras and Toscani [5]. As the first step, we compute the
localization of six targets in the known environment; see Fig. 6.
Table 3 provides the average image coordinates obtained from
30 photographs taken with the NAO robot. Then, we calcu-
late the optical center with the uncalibrated and calibrated
approaches; see Table 4. The results confirm that the system can
provide stable and accurate position estimation measurements
for the NAO humanoid robot.

5. CONCLUSION

In this paper, we presented a method to calculate the position
of a camera. One of its most important features is that it does
not require calibration of the camera. Therefore, it is possible
to zoom in, change the focus, move the camera, or any other
actions involved in the active vision process. The algorithm
described in this paper follows a simple strategy, and we suc-
cessfully apply it to real images. Results obtained give us the
reliability to implement this method in a mobile robot, guaran-
teeing that the integrity of the robot is uncompromised by errors
in the calculation of its position.
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