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We consider the inverse scattering problem of retrieving the surface profile function from far-field
angle-resolved intensity data. The problem is approached as a nonlinear constrained optimization
problem. The surface, assumed one-dimensional and perfectly conducting, is also assumed to be a
realization of a Gaussian random process with a Gaussian correlation function with known standard
deviation of heights (δ) and correlation length (a). Starting from rigorously calculated far-field angle-
resolved scattered data, we search for the optimum profile using evolutionary strategies. Examples
that illustrate the proposed scheme are presented. Aspects of the convergence and lack of uniqueness
of the solution are discussed.

1. Introduction

The scattering of waves from randomly rough surfaces has a long history and is a subject
of importance in many fields of physics. The direct scattering problem consists of finding
the scattered field or the scattered intensity from knowledge of the surface profile, its optical
properties, and the conditions of illumination. Considerable progress towards an understanding
of the phenomenon has been made in the last few decades [1–4].

Rough surface inverse scattering problems have also received some attention, and take a
variety of forms. Most of the studies have focused on the retrieval of some basic statistical
parameter of the surface, such as the standard deviation of heights, or the height correlation
length [5–9]. These methods are based on approximate solutions to the direct problem, like
the Kirchhoff approximation [1, 2] or small-amplitude perturbation theory [2], and on simple
models for the statistical properties of the surface. A novel approach, based on a reverse
Monte Carlo simulation, was reported more recently for the estimation of the power spectrum
of surfaces in situations in which multiple scattering is significant [10].

A different kind of inverse problem is that of designing a surface with specified scattering
properties. This field has developed rapidly in recent years. Procedures to design and fabri-
cate one-dimensional surfaces that produce rather arbitrary angular scattering distributions
have been developed [11–14]. Extensions to the case of general two-dimensional angular
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distributions are not simple, but procedures to generate such diffusers have been recently put
forward [15, 16].

The problem of recovering surface profiles from complex amplitude far-field data has also
been the subject of some studies [17–21]. An important limitation of these methods is that
they are based on approximate models for the interaction between the incident light and the
surface, and fail when multiple scattering is important. In addition, since optical detectors
are not phase sensitive, the need to have amplitude rather than intensity data constitutes a
drawback that these methods share.

In the present work, we investigate the possibility of recovering the surface profile function
from far-field intensity data. We approach the problem as a problem of constrained opti-
mization. In previous communications [22, 23] we studied the performance of rough surface
inversion algorithms based on evolutionary strategies using two kinds of representations of the
objective variables. In [22], we employed a spectral representation of the surface and studied
the performance of two selection strategies; the elitist and non-elitist strategies. The search
space was reduced by considering surfaces that belong to a well-defined statistical class. This
constraint did not permit the use of intermediate recombination, as it would eventually lead
to departures from the assumed statistics. To circumvent this problem, in [23] the surface was
represented in terms of spline curves, permitting the use of intermediate recombination and
the treatment of deterministic profiles. It was found that the use of intermediate recombination
helped in the convergence of the algorithm.

In this paper, we consider the problem studied in [22] and explore the effects of using dom-
inant recombination, or crossover, on the performance of the algorithm. Dominant recombi-
nation does not produce the kind of problems introduced by the intermediate recombination
operator. In addition, we illustrate the robustness of the method presenting data corresponding
to five different surfaces belonging to the same statistical class.

The methods described here, and in [22, 23], do not rely on approximate expressions for
the field-surface interaction. Furthermore, our experience indicates that the convergence to the
optimum improves when multiple scattering occurs. Since, in general, the use of intensity data
implies that the solution to the problem is not unique, the improvement in the convergence is
possibly due to a reduction in the number of solutions in the presence of multiple scattering.

The paper is organized as follows. Section 2 introduces the notation and presents a brief
account of the direct scattering problem for one-dimensional surfaces. In Section 3, we for-
mulate the inverse problem as an optimization problem, describing the evolutionary algorithm
in some detail and discussing the differences between the intermediate and dominant recom-
bination. Representative results are presented in Section 4 and, finally, in Section 5 we present
our conclusions.

2. Scattering by one-dimensional rough surfaces

We consider the scattering of light from a one-dimensional, perfectly conducting, randomly
rough surface defined by the equation x3 = ζ (x1). The region ζ (x1) > x3 is the vacuum, the
region ζ (x1) < x3 is a perfect conductor, and the plane of incidence is the x1x3-plane. With
reference to figure 1, the surface is illuminated from the vacuum side with a p- or s-polarized
plane wave.

The single non-zero component of the electric or magnetic vector of the incident field has
the form

ψ2(x1, x3|ω)inc = ψ0 exp{i[kx1 − α0(k)x3]}, (1)

where α0(k) =
√

(ω/c)2 − k2, ω is the frequency of the field, and c is the speed of light in
vacuum. A time dependence of the form exp(−iωt) is assumed, but explicit reference to it is
suppressed.
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Figure 1. Geometry of the scattering problem.

The field scattered by the surface is

ψ2(x1, x3 | ω)sc =
∫ ∞

−∞

dq

2π
Rp,s(q | k) exp{iqx1 + iα0(q)x3}, (2)

where the scattering amplitude Rp,s(q | k) can be written in the form [24]

Rp,s(q | k) = i

2α0(q)

∫ ∞

−∞
dx1 exp{−iqx1 − iα0(q)ζ (x1)}χ (k, ζ ′(x1))F(x1 | ω). (3)

The factor χ (k, ζ ′(x1)) is

χ (k, ζ ′) =
{

−i[kζ ′(x1) − α0(k)] in p polarization

1 in s polarization,
(4)

and F(x1 | ω) represents a source function, given by

F(x1 | ω) =
{

ψ2 (x1, x3) |x3=ζ (x1) in p polarization

[∂ψ2(x1, x3)/∂ N ] |x3 = ζ (x1) in s polarization,
(5)

where ∂/∂ N = N·∇ = [−ζ ′(x1)(∂/∂x1)+(∂/∂x3)] is the non-unit normal derivative operator.
The angles of incidence θ0 and scattering θs are related to the components of the wavenumbers
k and q that are parallel to the mean surface through the expressions

k = ω

c
sin θ0 , q = ω

c
sin θs . (6)

The far-field intensity Ip,s(q | k) is defined as

Ip,s(q | k) = |Rp,s(q | k)|2. (7)

In the present work, the goal is to retrieve the unknown surface profile function ζ (x1) from the
intensity data Ip,s(q | k). With the squaring operation of the scattering amplitude Rp,s(q | k)
the phase information is lost, and this adds to the difficulties of inverting the data. Among other
things, the solution to the problem is not unique. That is, there can be two or more surfaces
that give rise to the same intensity scattering pattern. Aspects of the lack of uniqueness of the
solution will be discussed in Section 4.

3. Inverse scattering as a least-squares approximation problem

From the previous discussion, it is clear that establishing an inversion scheme to retrieve the
profile of a rough surface from scattered intensity data is not an easy task. In this section we
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reformulate the problem of inverse scattering in terms of a nonlinear least-squares bounds-
constrained approximation problem. It is assumed that we have access to far-field angle-
resolved scattered intensity data corresponding to several angles of incidence. The goal is to
retrieve the unknown surface profile function from these data. Some constraints on the kind
of surface that we seek are introduced in order to reduce the search space.

3.1. Definition of the fitness functional

The inverse scattering problem can be reformulated in terms of the fitness (objective) functional

f (z(x1)) = min

{
Nang∑
i = 1

‖I (m)(q | ki ) − I (c)(q | ki ; z(x1))‖2
2

}
, (8)

where the symbol ‖·‖2 represents the Euclidean norm of the intensity vectors as functions of the
scattering wavevector components q , Nang is the number of angles of incidence considered,
and the k ′

i s are related to those angles through equation (6). Then, I (m)(q | ki ) represents
an angle-resolved far-field scattered intensity pattern of the surface of interest (measured
or calculated) and I (c)(q | ki ; z(x1)) is a calculated intensity pattern obtained by solving the
direct problem with a trial surface profile z(x1). The functional f (z(x1)) can be interpreted
as an assessment of the closeness between the angular distributions of intensity I (m)(q | k)
and I (c)(q | k; z(x1)). The goal would then be to find a surface for which the condition I (c)(q |
k) = I (m)(q | k) is satisfied. When this happens, and if the solution to the problem is unique,
the best approximation to the original profile has been retrieved.

Note that in our definition of the fitness functional we require that the proposed surface
reproduces the ‘measured’ scattering data for several angles of incidence. The satisfaction
of this constraint should reduce the number of possible solutions and, hopefully, produce a
unique one. The inverse scattering problem can be viewed, now, as the problem of minimizing
f (ζ c(x1)).

3.2. Representation of the objective variables

To deal with the scattering problem numerically, the surface must be sampled. From the
preceding discussion it seems natural to choose, as the parameters of interest, the surface
heights evaluated at the sampling points. Changing these numbers independently, however,
would lead to surfaces with abrupt height changes, which does not correspond to the physical
situation of interest. One way to avoid this problem is to restrict the search space to randomly
rough surfaces that belong to a certain class. We are, thus, faced with a problem of constrained
optimization.

In our case, we have chosen the target surface as a realization of a stationary, zero-mean
one-dimensional Gaussian random process. With this assumption, the random process is
completely characterized by its two-point correlation function, which we also assume to be
Gaussian:

〈ζ (x1)ζ (x ′
1)〉 = δ2 exp{(x1 − x ′

1)2/a2} . (9)

Here, the angle brackets denote an average over the ensemble of realizations of the sur-
face profile function, δ = 〈ζ 2(x1)〉 1

2 is the rms height of the surface, and a its correlation
length.
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Surfaces belonging to this class can be generated numerically with the spectral method
described in [24]. Correlated random numbers that represent the surface heights at the sampling
points can be obtained through the expression

ζn = δ√
L

N/2−1∑
j = −N/2

[M j + i N j ]√
2

[
√

πa exp

{
−

(
aq j

2

)2
}]1/2

exp{iq jχn}. (10)

Here, N represents the total number of points on the surface, L represents its length, χn =
−L/2+ (n −0.5)
x are the sampling points spaced by 
x along x1, q j = −π/
x +2π ( j −
0.5)/L are the sampling points in Fourier space, and ζn = ζ (χn). The random sets {M j } and
{N j } contain statistically independent random Gaussian variables with zero mean and unit
standard deviation. In order to produce a set of real random numbers {ζn}, it is required that
the complex array {M j + i N j } be Hermitian. The first and second derivatives of the surface
profile function, which are required for the direct scattering calculations, can be obtained by
differentiation of equation (10).

3.3. Evolutionary inversion procedure

At least in principle, any of the optimization techniques reported in the literature could be
employed to minimize equation (8). However, as discussed in [22], the form of equation (8)
and the constraint imposed by the representation scheme of equation (10) suggest the use of
an algorithm belonging to the class of ‘direct search methods’ [25]. The main characteristic
of this kind of technique is that, throughout the entire optimization process, one only needs to
know the values of the fitness function and not its derivatives [26–28].

Evolutionary algorithms are a relatively recent set of ‘direct search methods’ that have
been successful in the solution of ill-posed inverse problems in different scientific disciplines
[29,30–32]. Examples of these heuristic population-based techniques are the genetic algo-
rithms [33], the evolution strategies [34], and genetic [35] and evolutionary programming
[36]. Notwithstanding their differences, all evolutionary algorithms are inspired on the Dar-
winian principles of variation and selection [37]. Given the characteristics of the inverse
problem studied here, it was considered that the evolutionary strategies were the best-suited
evolutionary algorithms for this task.

Several variations of evolutionary strategies have been proposed [38]. All of them, however,
follow the canonical structure shown in the flow diagram of figure 2. The starting point of
the optimization process is the generation of a random set P 〈g〉

µ |g = 0 of µ possible solutions to
the problem which, in the present context, are the Gaussian randomly rough one-dimensional
surfaces {zn} generated through equation (10). A secondary population P 〈g〉

λ of λ elements
is generated through the application of the ‘genetic’ operations of recombination and mu-
tation over the elements of the initial population P 〈g〉

µ . This represents the start of the main
evolutionary loop.

At this point, it is pertinent to mention that we have previously used λ to denote the
wavelength of the light, which is the usual notation in optical work. It is believed that due
to the different context in which the two quantities are employed, use of the same symbol to
denote both should not lead to much confusion.

Recombination exploits the search space through the exchange of information between
different elements of the population. Mutation, on the other hand, explores the search space
through the introduction of random variations in the newly recombined elements. Depend-
ing on the problem studied, it is possible to exclude the recombination operation from the
evolutionary loop, as it is indicated by the broken line in figure 2. That is, in the search for
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Figure 2. Flow diagram of the evolutionary loop.

the optimum, mutation could be the only operator employed. Once the secondary population
P 〈g〉

λ has been generated, one needs to evaluate the quality of its elements. For this, the direct
problem must be solved for each one of the newly generated surfaces of the secondary pop-
ulation. With this, a fitness value is associated to each trial surface. This is done through the
comparison between the calculated scattering pattern I (c)(q | ki ; zn) and the ‘measured’ data
I (m)(q | ki ), on the basis of equation (8). Only those elements of the secondary population
P 〈g〉

λ leading to promising regions of the search space will be retained, through some selection
scheme, as part of the population P 〈g + 1〉

µ for the next iteration of the evolutionary loop. The
procedure is repeated until a defined termination criterion has been achieved. The respective
sizes of the initial and the secondary populations, P 〈g〉

µ and P 〈g〉
λ , remain constant throughout

the entire search process.

3.3.1 Recombination and mutation. In the search for the optimum, new trial surfaces are
generated from the initial set of surfaces (population). Surfaces can be generated by selectively
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Figure 3. Schematic representation of the mutation operation.

combining them (intermediate and dominant recombination), introducing random changes in
them (mutation), or both.

In the intermediate recombination, new surfaces are generated through linear combina-
tions of the parent population. In our case, the first time that this operator is used the new
surfaces are the result of linear combinations of independent Gaussian random processes.
The result is also a Gaussian process and one can adjust the parameters of the combination
in such a way that the new surfaces belong to the required statistical class. In successive
iterations, however, the surfaces become more and more correlated, and the same opera-
tion generates surfaces that do not belong to the assumed statistical class. Intermediate re-
combination is, thus, not compatible with the representation and constraints imposed on the
problem.

In the dominant recombination, or crossover, the surfaces exchange elements of the Her-
mitian arrays (see equation 10). The resulting surfaces are Gaussian and belong to the
same statistical class as the parent population. With this scheme, the degree of correla-
tion between the surfaces is unimportant and the operator itself does not introduce any
bias.

Mutations are introduced by changing some of the elements of the Hermitian array employed
in the generation of a given surface (see figure 3). In this case, provided that the new numbers,
M j and N j , are zero-mean Gaussian-distributed random numbers with unit standard deviation,
and the hermiticity of the array is conserved, the new surface will belong to the statistical class
specified for the search space.

3.3.2 Selection. The selection operator generates, through a deterministic process, the set
of surfaces P 〈g〉

µ that will serve as the population for the next iteration of the algorithm. There
are two selection procedures employed in evolution strategies. The first one is known as
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the ‘elitist’ or (µ + λ) strategy, whereas the second one is called the ‘non-elitist’ or (µ, λ)
strategy. In the (µ, λ) scheme, the elements to be selected belong, exclusively, to the secondary
population P 〈g〉

λ . An important consequence of this is the possibility that the best elements
of the new population P 〈g+1〉

λ are less fit than the best element of the previous population
P 〈g〉

λ . This possible deterioration of the fitness values helps the algorithm avoid regions of
attraction that could lead to premature convergence to a local minimum [28]. Of course, if the
deterioration persists, the algorithm diverges.

In the elitist or (µ + λ) scheme, the new population P 〈g+1〉
µ is drawn from the two sets;

that is, from the initial population P 〈g〉
µ and the secondary one, P 〈g〉

λ . Only the best elements
are kept. In this case, there is never a deterioration of the fitness value and, for the case of
minimization, the elitist scheme guaranties a monotonic decrease of the fitness values. This
fact, however, makes the algorithm prone to premature convergence, as it can be trapped in
regions of attraction associated with local minima.

4. Results

Ultimately, the data that serves as input to the algorithm should be obtained experimentally.
However, in order to study and optimize the performance of the algorithms, in these studies
we use data obtained through a rigorous numerical solution of the direct scattering problem
[24].

For the two strategies explored, (µ + λ) and (µ, λ), each element of the initial popula-
tion consisted of a realization of a zero-mean stationary Gaussian-correlated Gaussian ran-
dom process with a 1/e-value of the correlation function a = 2λ and standard deviation of
heights δ = 0.5λ. Also, we chose the typical values µ = 10 and λ = 100 [34]. In both cases,
the maximum number of iterations was g = 300, which also provided the termination crite-
rion. To illustrate the procedure, we now present a detailed discussion of the recovery of a
profile.

The surface profile used to generate the original scattering data is shown in figure 4. The
surface was sampled at intervals of λ/10. Since the time of computation required to find the
optimum increases with the number of sampling points on the surface, and the direct problem
needs to be solved many times, in order to keep the problem to a manageable size we chose a
surface with N = 128 sampling points.

The data from which the profile is to be recovered were obtained by illuminating the surface
in figure 4 from four different directions, defined by the angles of incidence θ0 = −60◦, −30◦,
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Figure 4. Profile used in the generation of the scattering data.
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Figure 5. Scattered intensity produced by the surface depicted in figure 4 for the case of normal incidence.

0◦, and 40◦. In figure 5, we show the scattering pattern produced by the surface shown in figure
4 for the case of normal incidence.

For reference, we first present results without the use of recombination. The target profile
was searched starting from 30 different, and randomly chosen initial states. As it can be
expected when using a heuristic method, not in all of these attempts to recover the profile
the algorithms converged to the target surface. We found, however, that in most cases a low
value of f (zn) corresponded to a profile that was close to the original one (some of the
exceptions are discussed below). So, the final value of f (zn) was used as the main criterion
to choose the final reconstructed profile.

In figure 6 we present results obtained with the two evolution strategies studied considering
the same initial population. To facilitate the visualization of the results, the original profile is
shown with a dotted curve. The profile retrieved with the elitist strategy is shown with a solid
curve, whereas the profile retrieved with the non-elitist strategy is drawn with a dashed curve.
The vertical and horizontal displacements of the profile are understandable, as the far-field
intensity is insensitive to such shifts. On the other hand, such displacements are unimportant
for practical profilometric applications. Qualitatively at least, it is considered that in this case
the two algorithms were able to retrieve the profile.

Since the Euclidean norm of the difference between {zn} and {ζn} is sensitive to vertical
and lateral displacements of the profiles, it would not constitute an appropriate measure of
the accuracy of the solution. For this, let us first define, respectively, the sample mean and
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Figure 6. Reconstruction of the surface profile using the (µ + λ) strategy (solid curve) and the (µ, λ) strategy
(dashed curve). The original profile is plotted with a dotted line.
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variance of the original profile as

ζ̄ = 1

N

N∑
n−1

ζn, (11)

σ 2
ζ = 1

N − 1

N∑
n−1

(ζn − ζ̄ )2, (12)

and similarly for the trial profile. Defining the new profiles


zn = zn − z̄, (13)


ζn = ζn − ζ̄ , (14)

we propose the following metric for the resemblance of the profiles

ε = 1

2σ 2
ζ

min

{
1

(N− | l |)
∑

n

(
zn+l − 
ζn)2

}
. (15)

The subtraction of the sample means and the free subindex l in equation (15) reduce the
sensitivity of the error parameter ε to vertical and lateral displacements of the recovered
profile. For perfectly correlated surfaces, this parameter is zero. On the other hand, for un-
correlated random surfaces that belong to the same statistical class, the average ε should
be of order one (forgetting about the shift). The recovered profiles shown in figure 6 have
error parameters ε(µ+λ) = 0.006 and ε(µ,λ) = 0.004 for the elitist and non-elitist strategies,
respectively.

The curves in figure 7 represent the convergence behaviour associated with the reconstruc-
tions of figure 6. The solid curve shows a monotonic decrease of the fitness value, which
is typical of the elitist strategy. The dashed curve shows the convergence of the non-elitist
strategy towards the stationary point. One can see that the fitness value can increase in some
iterations and that the convergence of the algorithm is slower. However, after 300 iterations,
the respective fitness values f (zn)(µ+λ) = 10.2 and f (zn)(µ,λ) = 13.7 reached with the elitist
and non-elitist strategies are similar.

An interesting result that demonstrates the lack of uniqueness of the solution when intensity
data are used is shown in figure 8. The dotted curve represents the original profile, while the
reconstructions obtained with the strategies (µ + λ) and (µ, λ) are represented with solid
and broken lines, respectively. For this numerical experiment, the initial population was the
same for the two strategies, but different from the one used in the examples of figure 6. One
can see that, in this case, the recovered profiles do not resemble the original one. They have
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Figure 8. Reconstruction of the surface profile using the (µ + λ) (solid line) and (µ, λ) (dashed line) strategies
starting from a different initial population than in figure 6. The original profile is plotted with a dotted line.

associated error parameters and fitness values ε(µ+λ) = 0.205 and f (zn)(µ+λ) = 23.5 (elitist)
and ε(µ,λ) = 0.291 and f (zn)(µ,λ) = 21.8 (non-elitist). As explained below, these results il-
lustrate a curious symmetry property of the scattering problem for situations in which the
Kirchhoff approximation is valid.

The profiles recovered in figure 8 are presented in figure 9, but reflected with respect to
the x1 and x3 axes; that is, we replace z(x1) by −z(−x1). Surprisingly, one observes that
the resulting profiles resemble the sought one. The error parameters are now ε(µ+λ) = 0.027
(elitist) and ε(µ,λ) = 0.007 (non-elitist). To better understand this result, let us consider the
direct scattering problem in the Kirchhoff approximation. The far-field scattering amplitude
Rp,s(q | k) can be written in the form [2]

R(K )
p,s (q | k) = Fp,s(θ0, θs)

∫ ∞

−∞
dx1 exp{−ivx x1 − ivzζ (x1)}, (16)

where Fp,s(θ0, θs) is an angular factor given by

Fp,s(θ0, θs) = ±1 + cos θ0 cos θs − sin θ0 sin θs

cos θ0 + cos θs
, (17)

vx = k − q, and vz = α0(k) + α0(q), with k and q defined as in equation (6). The ‘+’ sign in
equation (17) is for p polarization, and the ‘−’ sign for s polarization.
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Figure 9. Curves representing the profiles shown in figure 8 reflected with respect to both axes (circles). The original
profile is shown with a dotted curve. The reconstructions obtained with the (µ+λ) and (µ, λ) strategies are represented
with a solid and a dashed curve, respectively.
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If we now consider the mirror profile ζm(x1), such that ζm(x1) = −ζ (−x1), we can write its
scattering amplitude as

[
R(K )

p,s

]
m(q | k) = Fp,s(θ0, θs)

∫ ∞

−∞
dx1 exp{−ivx x1 + ivzζ (−x1)}. (18)

With the change of variable u = −x1, it can be readily shown that the two intensity patterns
are equal:

I (K )
p,s (q | k) = [I (K )

p,s (q | k)]m . (19)

Thus, the validity of the Kirchhoff approximation leads to multiple solutions of the inverse
scattering problem. It should be mentioned that, in general, the rigorous solution of the direct
problem does not have this kind of symmetry. It is thus tempting to think that multiple scattering
effects, which invalidate the results obtained with the Kirchhoff approximation, reduce the
number of possible solutions of the inverse problem.

To complete this example, we discuss some results obtained when dominant recombination
is included within the evolutionary loop. The number of elements to be combined is ρd = µ.
Furthermore, we consider the same illumination conditions, number of realizations, and initial
states as those employed in the studies that led to figure 6.

With recombination, we observed a deterioration in the convergence behaviour of the algo-
rithms. The reconstructed profiles corresponding to the lowest fitness values, f (zn)(µ/ρd+λ) =
30.3 and f (zn)(µ/ρd ,λ) = 29.4, retrieved with the (µ/ρd +λ) and (µ/ρd , λ) strategies are shown
in figure 10 with solid and broken lines, respectively. To facilitate the comparison, the origi-
nal profile is drawn with a dotted curve. Although at first sight, there seem to be important
differences between the original and recovered profiles, lateral and vertical translations show
that the main features are preserved in the reconstructions. This is verified by the calculated
error parameters, which are ε(µ/ρd+λ) = 0.042 and ε(µ/ρd ,λ) = 0.043.

We close this section with a summary of more extensive studies of the retrieval of surface
profile functions. First, in figure 11, we present four profiles belonging to the same statistical
class as the surface of figure 4 (δ = 0.5λ and a = 2λ), together with the reconstructed ones
using the elitist and non-elitist strategies without recombination. If, in all cases, we keep
only the reconstruction with the lowest value of the fitness functional, the error parameters
associated with the reconstructions are in the range 0.002 ≤ ε ≤ 0.014. So, at least for this
statistical class and the chosen geometry, it can be said that the profile can be retrieved with a
high degree of confidence.

One should be careful, however, in trying to extrapolate on these results. As an example of
this, we present reconstructions of a surface belonging to different statistical class (δ = λ and
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Figure 10. Reconstruction of the surface profile using the (µ/ρd + λ) strategy (solid curve) and, the (µ/ρd , λ)
strategy (dashed curve). The original profile is plotted with a dotted line.
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Figure 11. Reconstruction of four different surface profiles using the (µ + λ) (solid curve) and (µ, λ) (dashed
curve) strategies without recombination. The original profile is plotted with a dotted line. (a) f (zn)(µ+λ) = 17.1,
ε(µ+λ) = 0.003, and f (zn)(µ,λ) = 27.1, ε(µ,λ) = 0.008; (b) f (zn)(µ+λ) = 29.3, ε(µ+λ) = 0.015, and f (zn)(µ,λ) =
25.4, ε(µ,λ) = 0.003; (c) f (zn)(µ+λ) = 10.7, ε(µ+λ) = 0.005, and f (zn)(µ,λ) = 5.7, ε(µ,λ) = 0.002; (d) f (zn)(µ+λ) =
14.0, ε(µ+λ) = 0.014, and f (zn)(µ,λ) = 22.2, ε(µ,λ) = 0.048.

a = 2λ). The surface is in fact the same one shown in figure 4, but expanded in the vertical
direction by a factor of two. The surface and the attempted reconstructions are shown in
figure 12. The reconstructed profiles have fitness values, f (zn)(µ+λ) = 33.6 and f (zn)(µ,λ) =
26.0, and error parameters ε(µ+λ) = 0.051 and ε(µ,λ) = 0.339 for the elitist and non-elitist
strategies, respectively.
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Figure 12. Reconstruction of a realization of a surface profile with δ = λ and a = 2λ using the (µ+λ) (solid curve)
and (µ, λ) (dashed curve) strategies without recombination. The original profile is plotted with a dotted line.
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From the error parameters and the appearance of the curves, it is clear that the reconstruction
obtained with the elitist strategy is a much better approximation to the original profile. However,
the fitness value obtained with the non-elitist strategy is lower than the one obtained with the
elitist strategy. This is probably an indication of the lack of uniqueness of the solution.

5. Conclusions

We have presented a study of two evolutionary algorithms to solve inverse scattering problems.
Starting from far-field intensity data and using both the (µ + λ) and (µ, λ) strategies, we
have successfully retrieved the surface profile that generated the scattering data. The time of
computation is similar, but the elitist strategy (µ + λ) uses twice as much memory as the
non-elitist strategy (µ, λ).

Although it appears that including the recombination operation degrades the performance of
the inversion procedures, the partial results obtained are far from being conclusive. Moreover,
apart from the works of Beyer [38] on the (µ/ρd , λ) strategy, we are not aware of other
systematic studies on the subject, and in particular with the (µ/ρd + λ) strategy.

The numerical evidence presented here suggests that the evolutionary strategies are well
adapted for inverse scattering applications. Further work is required to understand the influence
of the dominant recombination on the dynamics of the inversion scheme. Another important
consideration is the effect that noisy data have on the reconstructions. Some results (not
presented here for brevity) have been obtained with input data contaminated with noise; they
indicate that the inversion schemes are fairly insensitive to the presence of Gaussian additive
noise [39]. More systematic studies would be necessary to assess the tolerances of the inversion
method to the presence of more general kinds of noise.

Since the solution of the inverse problem is not necessarily unique, it seems appropriate to
use a stochastic method to search for the solution. The fitness function has many local minima,
and the initialization of the algorithm plays an important role in its convergence. In most of
the cases we have studied, the stationary point at the end of the evolutionary loop not only
seems to be associated with a low value of the fitness functional, but it also provides the best
approximation to the problem.

We have also presented cases in which the problem has more than one solution and cases
in which the best solution does not correspond to the surface with the lowest fitness value. In
such situations, one would have to perform further tests to decide on the best one. Although the
problem has many facets and can be rather complex, the results obtained so far are encouraging.

The success of an inversion scheme based on intensity information opens the possibility
of implementing such a procedure experimentally. However, further work is needed, not just
regarding the physical aspects of the problem, which have been simplified by our assumptions,
but also regarding aspects related to the performance of the evolutionary algorithms.
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