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Abstract This work describes the application of a new

strategy called brain programming for automating the design

of visual attention (VA) models. Nowadays, a term known

as cognitive vision coined within the computer vision and

cognitive research communities has been introduced to de-

limitate the kind of computer vision systems that are robust,

resilient and adaptable to the task at hand through the

incorporation of cognitive abilities. In particular, visual

attention is considered as a critical factor whose main goal is

to establish a relationship between the different properties or

features of the scene with the aim of selecting the most

suitable aspects for the task at hand. This paper follows a

main trend in cognitive computation where the visual

pathway is modeled through a succession of levels or layers.

Here, the VA task is defined with the idea that several areas

of the brain are in charge of its functionality in a hierarchical

way. To achieve such functionality, we propose that an

artificial process, mimicking the natural counterpart, would

be charged of looking for a set of complex operations using

an optimization/search process. The idea is to include such

operations within a VA model that will be evolved

according to a specific task. The aim of the whole process is

to provide with the best solutions among the space of pos-

sible visual attention programs (VAPs) for a given problem.

In this way, the article presents a methodology for auto-

mating the design of VAPs. Therefore, the final design can

be seen as a cognitive vision system that is engaged in a

purposive goal-directed behavior. The results obtained on a

well-known testbed confirm that the proposal is able to

automatically design VAPs that outperform previous man-

made systems developed by VA experts, while providing

readable results through a set of mathematical and compu-

tational structures.

Keywords Visual attention � Brain programming �
Cognitive vision

Introduction

The goal of gazing toward the objects of interest with a

camera attached to a computer has contributed to the cre-

ation of an important research area, devoted to the devel-

opment of computational models for visual attention (VA).

Nowadays, within the neuroscience community, VA is

understood as a natural process performed by the brain,

whose functionality is to perceive salient visual features.

This cognitive task is necessary since it is impossible to

focus the sight at two different objects during a single unit

of time and space. Moreover, VA is a skill which allows a

creature, living or artificial, to direct their gaze rapidly

toward the objects of interest in the visual environment [1].

Thus, the objects of interest refer to those locations or

regions in the image that are projected from the environ-

ment, and which contain important information at a given
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time. Hence, visual attention is considered as one of the

most important mechanisms in the visual system, whose

functionality in the brain or visual cortical areas is to

provide with the selectivity process that filters the visual

information coming from the retina through the visual

cortex. In the past, it was widely believed that human

observers constructed a complete representation of every-

thing in their visual field [2, 3]. Today, within the com-

putational neuroscience and computer vision communities,

it is well known that in order to process the high amount of

visual information, it is necessary to break down the

problem of image understanding into a series of simple,

local and serial image operations that can achieve near

real-time performance with typical computer systems.

In nature, the VA functionality, regarding the localiza-

tion of objects, is related to the brain areas around the

dorsal stream, see Fig. 1. Thus, the dorsal pathway has

been defined as projecting from V1 through V2, V3, the

middle temporal area (MT), the medial superior temporal

area (MST) and finally to the posterior parietal cortex [4].

Nevertheless, there is a lack of consensus about the specific

brain areas, structure and functionality that conform the

dorsal stream. For example, in the work of Milner and

Goodale [5], the dorsal stream is also known as the ‘‘how’’

stream; while in the work developed by Baluch and Itti [6],

the dorsal stream process differs significantly with respect

to previous works.

Nowadays, classical explanations of VA are in accordance

with the idea that the dorsal stream is influenced by bottom-up

(BU) and top-down (TD) factors. Thus, some works explain

the existence of two interacting neural systems that are

involved in the control of both factors to approach the problem

of visual attention [7–12]. In general, TD or cognitive factors

are voluntary; i.e., knowledge, expectations, desires and

current goals. While, BU or reactive factors depend entirely

on stimulus; i.e., novelty and unexpectedness. As a result, VA

is usually studied as two separate proposals [8] focusing on

BU or TD processes. Next, we formulate the main problem to

be studied in this paper.

Problem Statement

This paper describes a system that automatically designs

novel computational models of an artificial dorsal stream

(ADS). The problem is that of solving the automatic design

of visual attention programs (VAPs) without manually

reengineering the best solutions according to the task at

hand; i.e., the application to a specific image database.

Therefore, VA can be understood as a process that seeks to

emulate its natural counterpart by mimicking two main

tasks [26].

• Acquisition, in this stage, features are captured early,

automatically and in parallel across the visual field

using visual receptors. Normally, the receptors are

specialized to react to specific scene properties such as

orientation, color, brightness and movement. After-

ward, the information of receptors is transmitted and

processed along the different areas of the brain.

• Integration, in this stage, the separate visual features

present in the environment are combined in order to

perceive the most prominent region while seeking to

attend the objects of interest contained within the scene.

Fig. 1 The correspondence

between the dorsal stream areas

and the stages of the artificial

model. The idea is to emulate

the transformations that the

input image undergoes along the

visual attention pathway of the

natural system

Cogn Comput (2014) 6:528–557 529

123



In this work, VA is seen as the product of an optimi-

zation process, where BU and TD factors are integrated to

produce this single basic phenomenon. Thus, as in bio-

logical VA, the algorithm is composed of two tasks that are

used in the perception and action cycle. The first task,

related to perception, is ascribable to the limited processing

capacity of the visual system; while, the second function

related to action is a consequence of the selectivity or

ability to filter unwanted visual information. In this way, it

is said that VA selectivity is controlled by both cognitive or

TD factors such as knowledge, expectation and current

goals; as well as, involuntary or BU factors that refer to

reactive and sensory stimulation [9, 11]. Nonetheless, an

emphasis is given here to the ability of solving VA prob-

lems under a unique optimization framework [13]. It is for

this reason that in this paper VA is studied as a unique

process resulting from a single mechanism designed to

obey a given general purpose, which could be made of

different particular goals aiming to design a relationship

between the observer and the scene. In particular, this

paper details the application of the proposed methodology

for the solution of challenging TD problems that have been

previously employed in the literature and which are used

here as a benchmark to compare our proposal with four

state-of-the-art algorithms [14]. We considered this

framework as an unified approach for VA [15].

As a result, we identify some problems related to both

stages of VA. Firstly, the selectivity process related to the

acquisition stage is understood as the ability to filter out

unnecessary visual information and whose main aim is to

render visible the objects of interest. In other words,

selectivity responds the questions: ‘‘What features should

be utilized?’’ and ‘‘When to use a given feature?’’ How-

ever, the answers are not evident and should be searched

among the space of possible VAPs. Secondly, the inte-

gration of the best possible visual features into a single map

of salience, which is seen as a difficult task since different

visual dimensions produce a combinatorial problem.

Finally, we have the problem of formulating VA in terms

of an optimization/search process that looks for an ADS

capable of attending a given target. In this paper, we will

illustrate how an evolutionary approach allows us to

address these issues by implementing a brain programming

(BP) strategy.

Research Contributions

This paper outlines the following research contributions.

• First, the automated design of an ADS is explained,

where the problem is formulated in terms of an opti-

mization/search-based approach. The explanation pre-

sented extends the previous one of Dozal et al. [13, 15]

and Olague et al. [16].

• Second, a new strategy called brain programming

mainly based on genetic programming (GP) is intro-

duced. The approach follows the hierarchical paradigm

developed within the computational neuroscience com-

munity in combination with the idea that special

functions, in the form of mathematical and computa-

tional programs, can be evolved to solve the problem of

VA. Indeed, the proposed approach is able to design

competitive programs that challenge the designs of

human experts according to the achieved results using a

standard testbed.

• Finally, the performance of each experiment is reported

in Table 5, followed by a detailed analysis of each

successful experiment. In this way, the final structures

of the best VAPs are described together with some

details about the inner workings of the system.

Moreover, the article presents results that give statis-

tical insights about the dynamics and overall perfor-

mance of the evolutionary system.

This paper is organized as follows. A first section

devoted to the review of previous works in the area of VA

is presented, while giving a brief introduction to GP. Next,

the methods of ADS and brain programming are explained

from a computational standpoint. Finally, experimental

results are provided followed by the conclusions.

Related Work

Since the late nineteenth century, the VA mechanism has

been studied by researchers from different scientific dis-

ciplines, such as neurologists, physiologists, psychologists,

and in the last three-decades by people working at the

intersection of neuroscience, cognitive science and artifi-

cial intelligence, which is commonly known as cognitive

computation. This last community has studied the problem

of VA as a feasible way to reduce the complexity of visual

information processing [17–21]. Recently, a discipline

known as cognitive vision [22, 23] was created from the

combination of the computer vision and cognitive research

areas. Thus, it is said that cognitive vision systems should

be able to engage in purposive goal-directed behavior,

while adapting robustly to unexpected changes of the

visual field, and it should have the ability to anticipate the

occurrence of objects or events [22]. Moreover, VA is

considered a critical issue in cognitive vision [24].

Owing to the importance of the VA mechanism, many

different definitions have been formulated. Some of those

ideas are summarized next. At the beginning of the 1980s,

Posner et al. [25] proposed that VA could be understood in

terms of a ‘‘spotlight’’ that enhances the efficiency of

detection. Later, Treisman and Gelade [26] compared VA

with the concept of ‘‘glue,’’ which integrates the initially
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separable features into unitary objects. Then, in the same

decade Koch and Ullman [1] described VA as a skill which

allows the creature to direct their gaze rapidly toward the

objects of interest. Later, two different proposals were

developed. In the middle of the 1990s, Desimone and

Duncan [9] introduced VA as an emergent property of

visual processing that is seen as the product of many neural

mechanisms working to resolve the problems of resource

competition and control of behavior. Finally, Wolfe [27]

explains VA as an ‘‘enabler’’ rather than an actor. In other

words, instead of saying that attention somehow identifies

an object it is said that attention enables object recognition

processes to work on a single item at a given time. Hence,

after considering the previous works, we introduce a new

VA definition consisting on a functional relationship that

filters the visual information according to the task at hand.

Definition 1 (Visual attention) The concept of VA is

defined as a process that establishes a relationship between

the different properties or features of the scene, which are

perceived through the visual system, with the aim of

selecting the most suitable aspect for the task at hand.

In this way, we consider that VA performs both the BU

and TD processes through a single computational structure

with the goal of achieving the task at hand while consid-

ering a purposeful framework [28]. Therefore, according to

the feature-integration theory of Treisman and Gelade

[26], the VA process is divided in two stages: acquisition

and integration. Firstly, during the acquisition, it is said

that the receptors are adapted to perceive special features

such as orientation, color, brightness and movement. Sec-

ondly, the information of receptors is transmitted and

processed along different areas of the brain with the goal of

creating a suitable description of the objects of interest.

Therefore, during the integration stage, all separate features

used by the focus of attention task are merged into a single

computational structure describing the salient region. In

this way, from a computational standpoint, the whole

program structure can be seen as a way of describing a

region of interest within an image; where the final result is

useful for the visual perception task of attending the objects

of interest.

Brief History of VA from a Computational Standpoint

As we have reviewed the feature-integration theory of

visual attention was proposed by Treisman and Gelade

[26]. This theory is the most widely accepted paradigm

for VA within the cognitive science community, since it is

considered as a fundamental step for VA. In this way, the

first neurological and plausible computational model for

VA was outlined by Koch and Ullman [1] where it is

introduced a model composed of three stages. First, a set

of elementary features are computed across the visual

field in parallel. Second, the resulting maps are combined

into a single saliency map that encodes the prominence of

the scene. Third, a winner-take-all (WTA) network is used

to iteratively select the most prominent regions. As a

result, the WTA network shifts to the next most prominent

region after inhibiting the most active location. A year

later, Fukushima [29] proposed a model of selective

attention useful for visual pattern recognition, which

mimics the functionality of the human brain. This model

is a hierarchical multilayered neural network capable of

paying attention sequentially to two or more patterns.

Afterward, Burt [30] described three mechanisms for VA

and their computational implementation: foveation,

tracking and high-level interpretation. Then, Sandon [31]

in 1990 made the first implementation of a VA model

based on the work of Koch and Ullman. Later, Olshausen

et al. [32] proposed a neurobiological solution to the

problem of object recognition using a model of VA that is

capable of creating objects representations that are

invariant to position and scale. In this case, their work was

motivated by the theory of Palmer [33], who suggested

that the result of attention should be focused on the object,

considering a canonical or object-based reference frame.

At the same time, Milanese [34] proposed a VA system

that uses mechanisms inspired from biological processes,

which were further adopted by the computer vision

community and are now commonly utilized until these

days [14]. Moreover, Tsotsos et al. [35] developed a

biologically plausible model of VA making special

emphasis to the computational utility through the appli-

cation of special VA routines. In addition to the compu-

tational explanations that had been proposed in the

literature, their idea includes a new winner-take-all

algorithm that better matches the functionality of the

primate visual system by providing a method for con-

trolling a robot vision system. Nevertheless, one of the

most well-known computational models of VA is proba-

bly that of Itti et al. [36], which provided a software that

popularized the theoretical processes. Later, Itti and Koch

[14] compared four different strategies for feature com-

bination to achieve object detection. In their work, they

built a simple feed-forward architecture that consists of

two main stages: extraction of early visual features and

saliency map computation. The first stage could be

implemented in parallel, rendering it suitable for real-time

applications. Later, Torralba [37] in 2003 created a VA

model that incorporates contextual statistical information.

The quality of the results showed that contextual infor-

mation improves object detection by directing the visual

search toward the prominent features of the scene.

Another important work is that of Walther and Koch [38]

where a biologically plausible model is proposed for
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forming and attending proto-objects aiming to enhance

the task of object recognition. Afterward, Cutsuridis [39]

discusses a cognitive model of saliency based on the

interaction between BU and TD stimulus, which drives

VA between saccades. In his work, he offered a hypoth-

esis of how the participating brain areas work together to

attend a specific region from a visual scene. Another study

developed by Kootstra et al. [40] propose a BU model that

predicts eye fixations based on symmetry instead of the

contrast feature. Their main result shows that symmetry

provides a better prediction in the case of human eye

fixations. Finally, Marat et al. [41] considered the prob-

lem of face recognition; they proposed the incorporation

of a ‘‘face‘‘ saliency map within existing VA models. The

idea is that this map emphasizes areas where a face should

be detected in order to improve the prediction of a set of

eye movements during video playing.

Brief Introduction to GP

Evolutionary computation incorporates a wide range of

techniques to solve problems based on Darwin’s theory of

evolution; and the well-known principle of natural selec-

tion, commonly known as ‘‘survival of the fittest.’’ Today,

the most popular of evolutionary algorithms is GP which

was formalized by Koza [42]; and it is understood as a

machine learning approach useful in the design of com-

puter programs. GP is an offshoot of genetic algorithms

that automatically solves problems without requiring the

designer to know or specify in advance the final form or

structure of the problem solution. Thus, GP is said to be a

systematic, domain independent method; nevertheless, the

user usually needs to define the way in which GP evolves

programs often in a domain-specific language, through a

user-defined task, using a set of functions and terminals

together with the given criteria.

In artificial evolution, such as in nature, there is a

population of individuals. In GP, the individuals in the

population are computer programs, which are usually

written as syntax trees or as corresponding expressions in

prefix notation. Each individual in the population is

evaluated to establish its quality at solving a given

problem. Note that such measure is called the fitness

function, which is widely known as the objective function.

In general, the individuals in the initial iteration, or gen-

eration, of the process will have poor fitness. Nonetheless,

some individuals in the population will prove to be

slightly fitter than others. The fitter individuals survive

and produce offspring that replace older and relatively

unfit individuals from the population. In Koza’s style of

GP, the population is usually of fixed size. The paradigm

incorporates the idea of genetic inheritance through some

specialized computational operations that are used to

produce new programs by either mutation or crossover.

The Darwinian principle of reproduction and survival of

the fittest, as well as the genetic operations of crossover

and mutation, are both inspired by the biological

exchange of genetic material and are used to create a new

set of individuals to improve the current population.

Mutation operators make a random change to a copy of a

selected program. In other words, a selected point muta-

tion replaces a node within the tree by another randomly

generated tree without imposing an arity constraint; i.e.,

number of arguments. Crossover works with two selected

programs, called parents, from the current population; the

idea is to exchange code between parents by randomly

selecting subtrees. In Koza’s style of programming sub-

tree, crossover removes one branch from one tree and

inserts it into the other. These simple processes, mutation

and crossover, should ensure that the new programs are

syntactically valid. Also, a problem known as bloat,

related to the uncontrollable growth of the programs, is

usually approached with a user-defined bound.

Thus, GP can be seen as a machine learning approach

that looks into the search space of all possible computer

programs that are defined appropriately to the problem

domain. In the same way, as any other stochastic process,

the GP algorithm can never guarantee an optimal solution;

however, this kind of heuristic methods can help in the

solution of problems where deterministic methods are

unable to offer a suitable solution. In our GP-based

approach, that we are calling brain programming, a set of

programs are searched with the goal of synthesizing key

mathematical operations applied within the hierarchical

computational structure of the ADS.

Methods

This section provides a general overview about the pro-

posed optimization methodology useful in the design of

an ADS. First, we introduce the biologically inspired

model for VA that serves as the general framework; it is

on this model where key functions will be optimized

through the paradigm of artificial evolution. Next, we

provide some details about the implementation of the

proposed BP algorithm, which has been applied to gen-

erate optimal ADSs to solve a challenging VA-database

problem.

The ADS Algorithm

The ADS algorithm is as a computational model that

mimics the biological process of focus of attention [1, 29,

30]. The ADS attempts to emulate the natural process that

takes place along the visual cortex, specifically through the

532 Cogn Comput (2014) 6:528–557
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dorsal stream. Today, the ADS is said to perform its task

according to the neurological theory of feature-integration

[26]. This theory states that the operation of an ADS is

divided into a two main-stage process that works sequen-

tially to fulfill the VA task. The stages are 1) visual feature

acquisition and 2) feature-integration. From a computa-

tional perspective, the ADS is comprised of several func-

tions arranged in a forward manner. Figure 2 shows the

flow diagram of the ADS algorithm, and in the following

subsections, we explain both stages of the ADS.

Visual Feature Extraction and Visual Maps

In the visual system of primates, visual features follow a

pathway across the retina, superior colliculus, lateral

geniculate nucleus and early visual cortical areas [43].

Along the pathway, the low level mechanisms applied to

the task of feature extraction act in parallel over the entire

visual field to provide the stimulus for the subsequent

stages of the ADS, which highlight the prominent regions

of the image [1, 26]. In fact, it has been shown by Julesz

[44] that a set of texture discriminators, called textons,

provide a specific set of features that are detected in par-

allel. These features are specialized in the detection of

color, line orientation and certain shape parameters such as

curvature and convexity. Moreover, Treisman and Gelade

[26] also described such features as acting in parallel with

each feature defined to conform a particular dimension.

Next, some basic definitions are introduced to understand

the overall strategy.

Definition 2 (Image as the graph of a function) Let f be a

function f : U � R
2 ! R. The graph or image I of f is the

subset of R
3 that consist of the points (x, y, f(x, y)), in

which the ordered pair (x, y) is a point in U and f(x, y) is

the value of f at that point. Symbolically, the image

I ¼ fðx; y; f ðx; yÞÞ 2 R
3jðx; yÞ 2 Ug.

This definition recalls that the scene is perceived

through a camera composed of a two-dimensional array of

sensors that measures the amount of light that reaches

them. Note that the definition can refer to an image taken

with a camera or to any of the false images issued by an

image operation. In this way, the images are the result of

the impression of light across the two-dimensional sensor

plane, as well as the output issued by the image processing.

Moreover, the image I obtained by the camera is defined as

the graph of a function, since this mathematical concept is

used at the moment of describing the transformations that

will be used in our functional approach. Thus, this defini-

tion helps us to understand the image as the initial input to

a function-driven paradigm of the visual cortex model.

Previous works [4, 5, 9] described the brain as divided into

several specialized areas, each of them performing a spe-

cific task. In our work, we claim that such functionality can

be imitated by a set of mathematical functions and opera-

tors together with some computational structures.

In general, digital color images are composed of three

bands at different wavelengths of light: red, green and blue.

In this way, it is possible to transform an image that is

represented in the RGB color model into another, such as

the CMYK and HSV models. In this paper, the input set of

images is defined as follows: Icolor = {Ir, Ig, Ib, Ic, Im,

Iy, Ik, Ih, Is, Iv} that provides the initial representation of

the scene. Next, the input image in Icolor is transformed by a

visual operator (VO) to recreate the feature extraction

process of the brain, resulting into a visual map (VM). In

our work, each VO is defined as a mapping VOd : Icolor !
VMd where the domain of the function is Icolor and the

codomain of this operation is a visual map VMd along a

particular dimension. Each kind of feature is classified or

grouped into several dimensions, such as color, orientation,

spatial frequency, brightness and direction of movement;

this is according to the theory of Treisman and Gelade [26].

The current work follows the implementation of Itti et al.

[36] where the transformed pixel value is represented byFig. 2 Flowchart of the artificial dorsal stream
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the feature prominence along each dimension considering

orientation, color and intensity; hence, d 2 fO;C; Intg.
Figure 2 shows that features are extracted sequentially one

at a time by applying the corresponding operator VOd.

These features are detailed next.

Orientation The extraction of orientation information on

the natural visual system occurs by the action of simple and

complex cells at the primary visual cortex (V1), as well as in

the V2 layer. These cells are in charge of estimating the

sensitivity to the orientation stimulus by decomposing the

image into a set of small linear segments at different ori-

entations and scales [45]. From a computational perspec-

tive, the operator VOO extracts prominent edges that are

present in the image and is defined as follows:

VOO:Icolor ! VMO: ð1Þ

The result of this operation is a visual map VMO for

which the pixel values represent the prominence of the

feature considering the orientation dimension. Typical

systems considered a first processing step that produces

simple features modeled as a neural network or through

convolutions of the input images with Gabor filters of

various orientations, spatial frequencies and scales [29, 34,

36, 37]. The goal is to compute a variety of structures, such

as corners, line intersections and parts of objects.

Color In the natural system, the color is encoded through

a set of photoreceptor cells known as cones, which are

located at the retina. The human color vision depends on

three types of photosensitive molecules: short wavelength

or blue sensitive (SWS), middle wavelength or green sen-

sitive (MWS) and long wavelength or red sensitive (LWS)

[46]. In this way, the visual pigments consist of the mol-

ecules that transform light energy into an electrical

impulse. In nature, the yellow color is a special case since

it cannot be perceived by the cones but rather at the retinal

ganglion cells. Moreover, it is well known that in several

modules of the visual cortex, there are cells that respond to

color stimulus as in the V1, V2, and V4 layers. On the

other hand, on the computational framework these ideas are

achieved with the following visual operator:

VOC:Icolor ! VMC: ð2Þ

The result of this operation is an image or visual map

VMC containing the prominence in color. In previous work,

these pre-attentive mechanisms, sensitive to color, are

computed through spatial differences on the image chan-

nels using a center-surround contrast; i.e., red–green and

blue–yellow color opponencies [34, 36, 38]. The goal is to

find high-contrast regions within the image.

Intensity The intensity is a magnitude that indicates the

amount of light striking a photosensitive receptor. Physi-

ologically, human beings have specialized ganglion cells to

record this feature. In general, each ganglion cell has a

circular receptive field that responds to the intensity of light

reaching it [9, 26]. In order to obtain the intensity a simple

formula is applied:

VMInt ¼
Ir þ Ig þ Ib

3
; ð3Þ

where Ir, Ig and Ib are the red, green and blue bands of the

image in the RGB color space [34, 36, 38]. The result of this

operation is a visual map VMInt that is directly computed

with the pixel values, obtained by the camera, and which

represents the intensity defined with the above formula.

Although the acquisition of visual features can be per-

formed in a parallel manner in the implementation of the

ADS algorithm, depicted in Fig. 2, a for loop is used to

iterate across the dimensions. During one loop of the

algorithm, the operator VOd is applied over the input Icolor.

After the construction of each visual map, the system must

calculate an additional map known as the conspicuity map

for each dimension. The following section is dedicated to

the description of such process.

Computation of the Conspicuity Maps

Once the VMs are obtained, the next step is to compute the

conspicuity maps (CMs). These maps are obtained by

means of a function that is applied to simulate the center-

surround (CS) receptive fields. This part of the computa-

tional system is inspired from the natural structure that

measures the differences between firing rates at the center

(c) and surroundings (s) areas of the ganglion cells. In our

work, the CMs are obtained following the Walther and

Koch model [38]. The computational center-surround

mechanism compares the average value of a center region

to the average value of a surrounding region in the visual

receptive fields [18]. In particular, the center-surround is

implemented in the model as the difference between fine

and coarse scales using a pyramid of nine scales [36]. This

function is defined as follows:

CS:VMA
d ! CMd 8 d 2 fO;C; Intg;

where A ¼ f1; 2; . . .; 9g is the set of scales a 2 A, and VMd
A

is a pyramid for each dimension d that is obtained by

employing a Gaussian filter applied to each of the corre-

sponding VMs using r = a, which can be written as

VMa
d ¼ Gr¼aHVMd with H representing the convolution

operation. In this way, the CS mapping is composed of two

steps that are defined next.
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• First, an across-scale subtraction � is performed

resulting in a center-surround pyramid VMd
x of six

levels; in such a way that the value of the pixel cor-

responds to a difference of Gaussians from the nine

level pyramid VMd
A. Thus, the across-scale subtraction

is defined as follows:

VMx
d ¼ NðjVMc

d � VMs
djÞ 8 d 2 fO;C; Intg;

where Nð�Þ is a normalization operator, c = {3, 4, 5}

and s = {c ? 3,c ? 4}. Note that for each scale value

of c exists two values of s; where s; c � A and the final

result is a pyramid with six levels x ¼ f1; 2; . . .; 6g
calculated through six across-scale subtractions.

• Second, the VMd
x pyramids for each dimension perform

an across-scale summation � in order to obtain all

conspicuity maps CMd. This can be written as follows:

CMd ¼ Nð�6
x¼1VMx

d Þ 8 d 2 fO;C; Intg:

At this point, we have a normalized CM for each

dimension. Once that the feature extraction and center-

surround processes are finished the ‘‘for’’ loop ends, see

Fig. 2. The next stage on the ADS algorithm deals with the

combination of the CMs into a single saliency map.

Feature Combination and the Saliency Map

The aim of the feature combination process is to fuse the

CMs into a single map of salience information. This pro-

cess highlights a set of locations through a saliency map

(SM), resulting in a set of prominent regions within the

image. Anatomically, the location of the SM within the

brain is unknown. Moreover, within the neuroscience

community, a clear description of how the brain makes

such an integration is still a subject of discussion. In this

way, Koch and Ullman [1] proposed as hypothesis that the

SM resides either at the lateral geniculate nucleus (LGN),

or at the striate cortex (V1). Along this line of research,

several authors have proposed other explanations for the

location of the SM; for example the thalamic nucleus and

the pulvinar regions proposed in [47], the V1 as described

in [48], the V4 region explained in [49], even at the pos-

terior parietal cortex detailed in [50] and finally at the

lateral intraparietal area as illustrated in [51].

The feature-integration process is a difficult task since

the CMs are part of different and unrelated visual modal-

ities working at the sensory system level. Indeed, we claim

that a goal-driven paradigm could serve the purpose of

integrating such problematic and apparently different

characteristics of the feature-integration process. In this

way, most models involving BU and TD factors can be

seen as highly relevant regarding the achievement and

pursuance of the VA process. Thus, the criteria that guide

the search toward the most suitable combination of char-

acteristics should be defined in accordance with the task at

hand. Therefore, the integration of CMs is accomplished by

a feature-integration operator FI as follows:

FI:CMd ! SM 8 d 2 fO;C; Intg: ð4Þ

Commonly the SM is the result of the average of all

CMs. Once the integration of features is achieved, a WTA

network is applied to compute the most salient pixel from

the resulting SM. Then, a region around the winner, known

as proto-object, is delimited using a spread function that is

controlled by a threshold. Thus, the proto-object indicates

the location of the most prominent region within the ori-

ginal image [52, 53]. Note that an image can contain more

than one proto-object; hence, the WTA process should be

capable of distinguishing several regions. The feature-

integration stage is depicted in Fig. 2.

Brain Programming

The present work follows a function-driven methodology

that approaches the biological visual process from the

standpoint of its functionality, while paying special atten-

tion to the goals. Our method differs to the data-driven

approach that is based on a large amount of knowledge,

defined by the experts, encoded as a set of patches; where a

patch is a small contrasting part of an image. Those patches

come from the hard-coded operations that are applied at the

different stages of the ADS. The proposed methodology,

brain programming, describes a manner in which an ADS

can be optimized to imitate the functionality of specialized

areas of the brain through a set of operators. This paper

presents a function-driven approach to extract and combine

the relevant information that solves a specific visual task;

in this case the VA problem. In particular, we claim that

brain programming, a GP-based strategy embedded into a

well-known hierarchical process and combined with key

elements such as center-surround mechanisms, including

normalization and pyramid scale processes, are able to

provide with the suitable tools that are necessary to

implement this methodology in highly creative ways.

Clearly, the classical approach of single or multiple tree

GP process is insufficient to evolve the whole ADS owing to

the high level of complexity. Nevertheless, the approach

described in this paper provides a strategy that is able to

automatically design such programs or solutions. In this

section, we describe the main aspects to implement the BP, a

new evolutionary technique, with the aim of designing ADSs

for VA problems, which will be further tested against four

state-of-the-art TD strategies using a well-known database.

Thus, BP is a bioinspired strategy where the major changes
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with respect to the GP came from the fact that the possible

solutions or individuals cannot be defined as an array of trees,

but rather as a complex structure composed of several trees

and other predefined processes. The motivation for these

changes is the idea of emulating the functionality of an organ,

such as the brain, and its complexity, see Fig. 3. Our

approach is inspired by the idea that the brain is subject to the

process of evolution [54]. We introduced these changes in

order to deal with the evolution of complex structures to be

tested in a challenging classical problem of VA. As a result,

BP exhibits the ability to design novel VA programs that

achieve a lower false detection rate than those designed by

human experts.

Genetic Representation of the ADS

In our work, the genetic representation of the ADS, the

genotype, consists of a triplet of trees embedded within an

ADS. In GP, programs are usually encoded as syntax trees

made up of internal and leaf nodes, which are defined by a

set of primitive elements also called function set, and ter-

minal set. Thus, the sets of functions and terminals repre-

sent the problem search space. Note that we will refer to

the genotype only by the triplet of trees although the final

result, phenotype, is achieved by a more complex system;

in this paper the ADS. Indeed, the genotype looks for a set

of key operations that in combination with the whole

structure define the desired design by mimicking the

operations at different brain areas. Nevertheless, our

implementation of brain programming follows a general

GP-based approach since the genetic representation is the

link to the real-world problem together with the definition

of the fitness function. Figure 4 provides the classical

diagram of the sequence of operations in an evolutionary

algorithm where the evaluation of the fitness function is

calculated through a measure applied to the ADS. In this

section, we will explain the necessary steps that were taken

to define the genetic representation of the ADS. The idea is

to evolve the different VOs, as well as the operation in

charge of the feature-integration stage. In the rest of the

paper, we will refer to such operations as the evolved

visual operators (EVOs) and the evolved feature-integra-

tion (EFI), resulting into an optimized saliency map

(OSM). Note also that this last operation could be related to

the concept of automatically defined functions [42] despite

the fact that the EVOs working as terminals are not directly

feeded into the EFI tree and that the EVOs are evolving

within a fix structure.

In this paper, each tree has its own sets of functions and

terminals that were carefully chosen according to the desired

functionality that we attempt to emulate. The first tree mimics

the orientation, or the functionality of the orientation-sensi-

tive cells in V1. Thus, we propose to evolve the operator for

orientation (EVOO) through a set of elements specially

selected to highlight edges, corners and other orientation-

related features using the set of terminals and functions pro-

vided in Table 1. The notation is as follows: the input for the

functions in FO can be any of the terminals in the TO set, as

well as the composition among them; Gr are Gaussian

smoothing filters with r = 1,2; and Du represents the image

derivatives along the direction u 2 fx; y; xx; yy; xyg.
The second operator encodes the color dimension or the

operation of photoreceptor cells and color-sensitive cells

present in the V1 and V4 layers of the visual cortex. Again,

we propose to evolve the color visual operator (EVOC) to

reproduce the color perception process. In fact, there is a

theory that explains how color perception has evolved in

nature [55]; thus, it makes sense to evolve such process. In

the case of artificial evolution, the evolutionary process

uses the set of functions and terminals provided in Table 2

to create the EVOC. The notation provided in Table 2 is as

follows: the input for the functions in FC can be any of the

Fig. 3 The analogy between

the natural and artificial

systems. The idea is based on

the evolution of several

mathematical operators,

immersed or encapsulated

within the artificial dorsal

stream, that emulate the

functionality of the

corresponding natural areas
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terminals in TC, as well as the composition among them.

Note that some functions of EVOC are the same of those in

EVOO. In addition, the function complement() provides a

negative image that is the complement of an intensity or

RGB image; in other words, each pixel value is subtracted

from the maximum pixel value and the difference is used as

the pixel value in the output image. Thus, in the output

image, dark areas become lighter and light areas become

darker.

Finally, the third tree encodes the way in which the

features are combined to obtain the OSM. This is accom-

plished with the idea of creating a fusion operator that

highlights the features of the objects of interest. Here, the

evolutionary method uses the set of functions and terminals

listed in Table 3. Note that the set of terminals is com-

pletely different to the previous ones, and it incorporates

the output of the previous stages of the ADS, not to be

confused with the output of the EVOs. The functions are

similar to some elements of the function set used in EVOO

with the addition of exp() and the equalization of the his-

togram EQ().

Figure 5 shows an example of the proposed genotype

that we are applying during the evolution. These three

functions are embedded into the flow diagram of Fig. 2 and

evolved with the evolutionary program outlined in Fig. 4.

At the beginning of the BP algorithm, it receives as input

the number of generations, the population size and the

number of trees to be evolved per individual. All individ-

uals of the initial population are a triplet of random trees

indicated by the num_trees parameter. In our experiments,

the number of generations, num_gen, is 30 and the number

of individuals per population size_pop is also 30. The ini-

tialization method that is applied to the population is

known as the ramped half-and-half method proposed by

Koza [42]. This approach creates half of the initial popu-

lation with the grow method and the other half with the full

method. The grow method produces unbalanced trees

allowing branches of different lengths while the full

method makes balanced trees, with all branches of the

Fig. 4 Flowchart of the brain programming strategy

Table 1 Functions FO and terminals TO applied for building the

operator EVOO

FO ¼fþ;�;�;�; j þ j; j � j;
p
; ðÞ2; log2ðÞ;

Gr¼1;Gr¼2; jj; 0:5 	 ðÞ;DxðÞ;DyðÞg
TO ¼fIb 2 Icolor;Gr¼1ðIbÞ;Gr¼2ðIbÞ;DxðIbÞ;

DyðIbÞ;DxxðIbÞ;DyyðIbÞ;DxyðIbÞg

Table 2 Functions FC and terminals TC used by the operator EVOC

FC ¼fþ;�;�;�; j þ j; j � j;
p
; ðÞ2; log2ðÞ; expðÞ;

complementðÞg
TC = {Icolor}

Table 3 Functions and terminals applied within the EFI stage

FFI ¼fþ;�;�;�; j þ j; j � j;
p
; ðÞ2; expðÞ;Gr; jj;

DxðÞ;DyðÞ;EQðÞg
TFI ¼fCMInt; CMO; CMC; DuðCMIntÞ;

DuðCMOÞ;DuðCMCÞg
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same length. The length of the tree must not exceed the

specified maximum to prevent that trees grow up without

control during evolution. In our work, the size of the

individuals should not exceed the user-defined maximum

depth in order to avoid uncontrolled growing of the trees to

prevent bloat. The depth of a tree is defined as the length of

the longest non-backtracking path from the root to an

endpoint. Tree depth limits the size of any given individual

within the population and it is dynamically controlled by

two maximum tree depths parameters. The first is the

dynamic max depth which is a maximum tree depth that

may not be surpassed by any individuals unless its fitness is

better than the best solution found so far. If this happens,

the dynamic max depth is augmented to the tree depth of

the new fittest individual. Conversely, it is reduced if the

new best individual has a lower tree depth. The second one

is the real max depth that is hard limited and which no

individual may surpass under any circumstances. Finally,

the termination criterion was defined as the maximum

number of generations; thus, the evolutionary process

reaches at least a suitable top-down model during each

single run. Table 4 summarizes the parameter values

applied by BP during the experimental runs. These

parameters have standard values [42].

In the following sections, the explanation of the GP-

based evolutionary process is further detailed through the

definition of the applied genetic operations and the crite-

rion for evaluation. The idea is to outline our approach and

illustrate a new way of obtaining VAPs.

Genetic Operations

After the initial population is created, and evaluated with

the fitness function, the next step of the BP algorithm is the

selection and genetic variation of individuals from the

population in order to breed the next generation. This is

accomplished through the genetic operations of selection,

crossover and mutation, see Fig. 4. The parents are

obtained using a fitness-proportionate selection method

implemented with the roulette-wheel strategy, which con-

sists in assigning to each individual a probability of

selection proportional to their fitness value. Thus, the fittest

ADSs are more likely to be selected, and the genetic

crossover and mutation are sequentially applied until a new

population is created. Note that the difference between GP

and BP arises from the genotype representation, the hier-

archical representation and special processes such as the

Gaussian pyramid and center-surround process. In this

way, the existence of a higher level of complexity within

the genotype structure motivates the development of new

genetic operators acting on different stratum that we call

gene and chromosomal levels.

Both methods of crossover need a pair of parents to

perform the corresponding operation. In the case of chro-

mosomal crossover, the crosspoint is located at chromo-

some level and the corresponding parts of the genotype are

swapped to produce the new offspring. For the gene

crossover, multiple crosspoints are chosen randomly at

each parent in the respective trees; then, the selected sub-

trees are exchanged between the corresponding parents to

create the new offspring; see Fig. 6. On the other hand, the

chromosomal mutation is applied to the triplet of trees in

such a way of randomly substituting all genes of the

compound chromosome with new operators. Finally, the

Fig. 5 Example of the ADS’s

genotype

Table 4 Main parameters settings of the BP algorithm

Parameters Description

Generations 30

Population size 30 individuals

Initialization Ramped half-and-half

Crossover at chromosome level 0.4

Crossover at gene level 0.4

Mutation at chromosome level 0.1

Mutation at gene level 0.1

Tree depth Dynamic depth selection

Dynamic max depth 7 levels

Real max depth 9 levels

Selection Roulete-wheel

Elitism Keep the best individual
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mutation at the gene level consists of the random selection

of a node within a single tree, called point of mutation.

This selected node is deleted and replaced by an entirely

new sub-tree, which is randomly generated to create the

new tree. This is carried out for each selected tree of the

compound genotype, and the strategy is repeated to pro-

duce a new individual and eventually a whole new popu-

lation; see Fig. 7. Note that if during the gene mutation, the

selected node is the root of the tree, the whole tree will be

substituted by a completely new random tree.

In our work, during the production of the new population,

the genetic operators are applied to find new solutions based

on a probability that is assigned for each operation with the

scheme proposed by Koza [42]. In this case, the operations

are computed independently and their total probability adds

to one. Hence, the crossover probability at gene and

(a)

(b)

Fig. 6 Schematics that

illustrate the crossover

operations at the chromosomal

and gene levels. a Chromosomal

Crossover, b Gene Crossover

(a)

(b)

Fig. 7 Schematics that

illustrate the mutation

operations at the chromosomal

and gene levels. a Chromosomal

Mutation, b Gene Mutation
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chromosomal levels are equal to 0.4 each; while the mutation

probability for both levels is equal to 0.2, see Table 4. These

genetic operators allow the variation of the genetic material,

while promoting genetic innovation of individuals through

all levels, and maintaining the diversity of the population.

Fitness Function or Objective Function

In brain programming like in any evolutionary method, after

the population is created, all individuals are evaluated, see

Fig. 4. For this reason, it is necessary to formulate a well-posed

fitness function in accordance with the goal that the ADS is

attempting to reach. In other words, the fitness function of BP

represents the characterization of the purpose, the answer to the

question ‘‘What are the individuals for?’’ [28]. Thus, like in all

optimization approaches, this step defines the way of imple-

menting the goal within a computer program. In this work, we

propose to use the F-measure within the BP process, as the

fitness function for evaluating the ADS performance for each

generated structure. Next, we explain how the fitness function

was implemented to approach a VA problem.

This section introduces the F-measure as the criterion

for evaluating the ADS within the proposed optimization

framework. The F-measure was created in the information

retrieval (IR) community. Van Rijsbergen [56] originally

proposed this measure through the Effectiveness function

(E). The definition is considered as the original formulation

of the F-measure, see Equation (5).

E ¼ 1� 1

a 1
p
þ ð1� aÞ 1

r

; ð5Þ

where a ¼ 1
b2þ1

and 0
 b
1. In the context of IR, the

computation of recall and precision is defined in terms of a set

of retrieved documents F and a set of relevant documents R:

r ¼ jF \ Rj
jRj and p ¼ jF \ Rj

jFj ; ð6Þ

where r is recall {r:0 B r B 1} and p is precision

{p:0 B p B 1}. Note that the F-measure is the weighted

harmonic mean of precision and recall. Moreover, the

weights give the advantage of balancing the values of recall

and precision. Thus, the general formula of the F-measure

is defined as follows:

Faðp; rÞ ¼
ð1þ aÞ � ðp � prÞ
ða � pþ rÞ ; ð7Þ

where a is the parameter that controls the balance between

p and r with 0
 a
1. Note that if a\ 1 the weight

variable p is higher; while if a[ 1, then the weight

variable r is higher, and when a = 1, the precision and

recall are said to be well-balanced.

In previous works, the F-measure has been used as an

evaluation criterion for applications related to computer

vision. For example, Pérez and Olague [57] proposed the

F-measure as a quantitative measure for evaluating evolved

SIFT descriptor operators for the classical problem of

image matching. In the same year, Gimenez and Evans [58]

proposed it as a method of comparison of different seg-

mentation algorithms. Later, Atmosukarto et al. [59] used

the F-measure as fitness function for a GP algorithm to

learn descriptors of shape variations that are used to rate

different facial abnormalities. These examples show that

the F-measure has been successfully applied to image-

related problems and we decide to test it within a well-

known VA problem.

Figure 8 provides a sketch describing the main areas

that were applied during the computation of the F-mea-

sure. This is applied to Itti’s database that was used as

benchmark [14]. Note that a proto-object refers to the

selected region issued by the VAP, while manual seg-

mentation denotes the area in the image that has been

manually segmented for training and testing. Thus, the

selected manual segmentation of an object is considered

as an ideal that the evolved models replicating the VA

process should seek to attend. For the computation of the

fitness function, we consider that the evolved ADS has

only one chance for correctly identifying the manually

segmented region that serves as ground truth. In order to

estimate the VA performance with the F-measure, we

compare the evolved proto-object with the manually

segmented region. In this way, the relationship between

the proto-object with the values of recall and precision

must be defined. Thus, the overlapping region between the

proto-object and the manually segmented one defines the

area where the true positive pixels are located. The

remaining areas outside the overlapping region refer to

the false-negative and false-positive pixels. These con-

cepts are formally defined next.

Fig. 8 The diagram illustrates areas; manual segmentation, proto-

object, overlapping region; that are used to compute precision and

recall variables
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Let M represent the set of pixels of the manually segmented

region, and let A be the set of pixels attended by the ADS.

Thus, the set of pixels O containing the overlapping region is

described through the intersection of both sets O = A \
M. Once that this relationship is stressed, the next step is to

substitute the corresponding variables in Equation (6) to

derive the definitions for recall (r) and precision (p) as follows:

r ¼ jOjjMj and p ¼ jOjjAj ; ð8Þ

where |X| denotes the number of pixels in X 2 fM;A;Og.
Hence, the following equation represents the criterion

Q that is applied as the fitness function:

Q ¼ argmax FaðPx
k;i;R

x
k;iÞ ¼

Xm

k¼1

Xn

i¼1

ð1þ aÞ � ðpi � priÞ
ða � piÞ þ ri

( )
;

where Q:FaðPs;RsÞ�FaðPt;RtÞ
ð9Þ

with n representing the number of thresholds of the spread

function, and m defines the number of training images.

Precision data of an image are denoted with Px
k ¼

ðp1; p2; . . .; pnÞ and recall data by Rx
k ¼ ðr1; r2; . . .; rnÞ;

where x represents the set of all possible solutions and

s; t � x. Therefore, Q represents the ascending ranking with

the highest value corresponding to the focus of attention

model x that best attends the particular object over all

training images. Therefore, once again, the F-measure

could be seen as a suitable approach whose results dem-

onstrated the easiness and usefulness at the moment of

specifying the goal of artificial evolution, which are both

reflected on the quality achieved during the final results. In

particular, the performance of the solutions is related to the

focused regions containing the relevant objects that aim a

specific purpose.

Experimental Results

This section presents an analysis and discussion about the

experimental results. The experiments were designed

considering a state-of-the-art image database composed of

three different objects: red can, emergency warning trian-

gle and traffic signals [14]. The databases used for training

and testing can be obtained from the USC ilab1, as well as

the source code of the saliency toolbox2. In this paper, each

test consists of 30 independent runs of the proposed BP

algorithm: the set of images for training and testing, as well

as the parameters that were fixed during the whole run. The

experiments were performed on a Dell Precision T7500

Workstation, Intel Xeon 8 Core, CPU E5506 at 2.13Ghz,

NVIDIA Quadro FX 3800, running Linux OpenSUSE 11.1

operating system.

Image Database

In this paper, the experimental tests consist of three dat-

abases of natural color images that are used to compare the

BP algorithm against four state-of-the-art methodologies

[14]. The first database consists of 104 images containing a

red can as target. This object in the first database is con-

sidered as the simplest target of the three due to its sim-

plicity since it can be characterized by only one color

feature. In fact, the results confirm this hypothesis. For the

experiments, we follow the proposed protocol described in

[14]. The first experiment uses 45 images for training and 59

images for testing. The second database is composed of 64

photographs containing a vehicle emergency triangle, which

can be seen as a more complicated target. The database

includes the warning triangle under different orientations,

scale factors and illumination. The 64 images are divided in

two sets of equal size for training and testing. In the case of

the third database, the collection is composed of 90 images

containing one or more traffic signals. This database con-

tains a broad variety of targets with diverse colors, shapes,

sizes and textures. For this reason, it is considered as a more

complicated database. Here, the database is divided in two

sets of 45 images. Finally, we would like to mention that the

targets in the three databases could be partially occluded,

opaque, with multiple backgrounds or suffering from

reflection of light when viewed from different perspectives.

Analysis of Results

Next, we present the results of this work accompanied by

an interpretation of the obtained data. The results of the BP

algorithm show evidence of the relatively easiness at

solving all databases, that were used as benchmark, while

finding the best solutions in comparison with the four state-

of-the-art algorithms [14].

BP Analysis

In this section, some typical statistics about GP are pro-

vided: fitness, diversity of population, number of nodes and

depth of trees, since those aspects are highly informative

and commonly used to describe the whole GP process.

Figure 9 depicts the statistics considering 30 runs of the BP

algorithm executed during 30 generations. All graphs give

an account about the performance and complexity of the

population during the training stage.

1 http://ilab.usc.edu/imgdbs/
2 http://www.saliencytoolbox.net/
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(a)

(b)

(c)

Fig. 9 Brain programming

statistics along the execution of

30 experiments grouped by the

target’s database: a red can,

b warning triangle and c traffic

signal. In 1, the fitness chart

shows the average, median and

best fitness. While 2 plots the

diversity of population through

the percentage of uniqueness in

the EVOs and EFI as well as the

Euclidean distance among the

population individuals. Finally,

3 and 4 depict the complexity of

the structure of the EVOs and

EFI based on the amount of

nodes and depth, respectively
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The first example is known as the red can database

problem. Figure 9a.1 presents the graph of best fitness

where we can observe the simplicity at solving the red can

attention problem. Indeed, we can say that the problem is

almost trivial for the ADS, which cannot be considered as a

real test from the GP standpoint. Nevertheless, this exam-

ple serves the purpose of illustrating the functionality of the

BP algorithm. Note that from the first generation, the ADS

scores a fitness value of 17, which is quite close to the best

fitness value of 20. Note that BP converges to the optimal

ADS by the fifth generation. Moreover, the average and

median population fitness roughly improve through the

whole run despite the early convergence around the global

optima where multiple local maximum exist from the

genotype standpoint. Thus, the optimization provided by

the BP algorithm achieves better ADS designs as evolution

proceed.

The graph provided in Fig. 9a.2 shows the loss of

population diversity along the evolution according to the

percentage of uniqueness. In fact, such behavior found on

the BP strategy is characteristic of the evolutionary com-

putation methodologies. Thus, controlling this aspect is of

major importance since population’s diversity promotes a

broad exploration of the search space while preventing the

population from prematurely converging to a local optima.

In this work, we measure the population diversity among

the triplet of trees in the BP population; this is computed

through the percentage of unique EVOs and EFI. The

diversity graph depicts a decreasing trend on the level of

uniqueness to 15 % probably due to early convergence.

Moreover, diversity was also measured in the fitness space

through the Euclidean distance among individuals. In this

case, between the fitness values of the ADSs whose mea-

sure takes into account the fact that behavior for different

programs can be very similar or even identical. As a result,

the plot illustrates that while the uniqueness of EVOs

decreases significantly the total difference about the ADSs

performance remains constant.

One severe problem in GP-based strategies is related to

the tree representation where programs transform into lar-

ger and slower structures without any improvement in their

performance, while producing also a problem on their

generalization ability; this is known as the bloat problem.

Figure 9a.3 and a.4 plot the scored complexity measured

by the number of nodes and depth according to the tree

structures. Here, we can observe in the BP experiment that

the complexity remains constant during the whole evolu-

tionary run, while keeping the average value around the 2.0

level per tree; far below the dynamic maximum depth

value of 7. Hence, the overall structure allows an

improvement on the measured fitness function. We con-

sider that the problem of bloat is minimized since our

proposed design includes the hierarchical structure and

several well-known principles of cognitive neuroscience.

In this way, the methodology does not need to find the

whole algorithmic process for solving a given task.

After examining the results achieved by BP on the

emergency warning triangle database at Fig. 9b, it is pos-

sible to observe that the behavior regarding the fitness plot

is similar to that achieved on the red can database. Nev-

ertheless, in this case, the convergence toward the maxi-

mum fitness value for all runs is achieved by the 13th

generation. Furthermore, the average and median fitness

improve smoothly along the run, which is the expected

result for BP, see Fig. 9b.1. In the same way as in previous

experiments, diversity is calculated through the uniqueness

measure of EVOs that decreases rapidly toward a value

around the 25 %, where the Euclidean distance remains

almost the same during the whole evolutionary run.

Moreover, in terms of complexity, Fig. 9b.3, b.4 shows that

it is possible to observe a slight decrease in the number of

nodes and depth level for all operators along the 30 gen-

erations which is an unusual behavior for a GP-based

strategy, while reaching an average value between 1.83 and

3.32 for the nodes, and of 1.8 and 2.29 for the depth levels.

The results achieved by the BP strategy on a third

database including traffic signals are shown in Fig. 9c.

Contrary to previous experiments, and even when the

average best fitness maintains an increasing rate the evo-

lution does not converge toward the maximum fitness. In

this occasion, the fitness scores an average maximum value

of 16.98. The last fitness improvement was obtained during

the 27th generation. Moreover, Fig. 9c.2 presents several

levels of diversity that are clearly separated among them,

with the lowest percentage of uniqueness scoring 28.77 %

for EVOO, 25.11 % for EVOC and 38.33 % for EFI.

Meanwhile, the Euclidean distance achieves a small gain.

Thus, regarding the level of complexity, see Fig. 9c.3, c.4:

the EVOC shows a diminution in average toward 2.43 for

the number of nodes and 1.86 for the depth level; the

EVOO shows an increment in average toward 3.5 for the

number of nodes and 3.5 for the depth level; and finally, the

EFI of 6.63 on the number of nodes and 4.3 for the depth

level.

These results show that the behavior of the BP algorithm

is characterized by the image database. As a result, the

expected behavior of the BP strategy follows the regular

trend toward the best solution of optimization approaches,

with the exception of complexity that seems to avoid the

typical intricate designs of standard GP approaches. In fact,

these results point to the enforcement of the parsimonious

principle where the most effective solutions are also the

simplest ones. Next, the final solutions are analyzed from

the standpoint of their effectiveness. We then evaluated the

performance of the proposed model in well-known visual

attention experiments using a standard testbed. Finally, we
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repeat the above experiments with reduced sets of func-

tions and terminals.

Effectiveness of Solutions

The best individuals obtained through the BP runs were

tested with different sets of images; this process is known

as the testing stage. In these experiments, each data were

randomly divided into two subsets with a balance number

of images, the first subset called the training example was

used to learn the EVOs and EFI, and the second subset was

used for testing the proposed model. All images are the

originals of the standard test, and the performance was

measured as the number of false detections computed after

the failure in the identification of the most salient target

[14]. All experiments were tested on 30 independent runs,

and the average and standard deviation are reported.

In this section, the results of the best individuals for each

BP run are listed and compared against the solutions

obtained with four previous approaches developed by Itti

and Koch [14], in order to study the problem of integrating

the optimal features, produced through different visual

Table 5 The false detection rate achieved after finding the target (mean ± standard deviation)

Itti and Koch results, see [14]

Naive N(.) Iterative Trained

Red can 2.90 ± 2.50 1.67 ± 2.01 1.24 ± 1.42 0.35 ± 1.03

Triangle 2.44 ± 2.20 1.69 ± 2.28 1.42 ± 1.67 0.87 ± 1.29

Traffic 1.84 ± 2.13 0.49 ± 1.06 0.52 ± 1.05 0.24 ± 0.77

Brain programming results

BP0 BP1 BP2 BP3 BP4

Red can 0.31 ± 0.88 0.25 ± 0.73 0.29 ± 0.77 0.29 ± 0.77 0.29 ± 0.77

Triangle 0.16 ± 0.45 0.28 ± 0.77 2.37 ± 5.181 0.37 ± 0.66 0.06 ± 0.242

Traffic 0.80 ± 7.76 0.31 ± 0.87 0.38 ± 1.19 0.16 ± 0.52 1 0.62 ± 1.991

BP5 BP6 BP7 BP8 BP9

Red can 0.29 ± 1.13 0.29 ± 0.77 0.22 ± 0.77 0.29 ± 0.77 0.12 ± 0.46

Triangle 0.22 ± 0.49 0.56 ± 1.6 0.19 ± 0.4 1.28 ± 2.25 0.12 ± 0.42

Traffic 0.14 ± 0.42 3 0.20 ± 0.46 0.25 ± 0.491 0.27 ± 0.81 0.56 ± 1.522

BP10 BP11 BP12 BP13 BP14

Red can 0.27 ± 0.74 0.19 ± 0.61 1 0.27 ± 0.74 0.24 ± 0.9 0:08
 0:34 *

Triangle 0.13 ± 0.71 0.09 ± 0.3 0.44 ± 0.88 0.19 ± 0.406 0.37 ± 0.75

Traffic 0.55 ± 1.31 0.55 ± 1.11 0.18 ± 0.49 0.60 ± 1.27 0.06 ± 0.3512

BP15 BP16 BP17 BP18 BP19

Red can 0.17 ± 0.50 1 0.31 ± 0.81 0.27 ± 0.96 0.07 ± 0.26 3 0.29 ± 0.77

Triangle 0.07 ± 0.26 3 0.25 ± 0.44 0.09 ± 0.39 0.4 ± 1.16 2 0.13 ± 0.71

Traffic 0.46 ± 0.87 4 0.20 ± 0.56 4 0.48 ± 1.02 3 0.36 ± 1.0 0.56 ± 1.06

BP20 BP21 BP22 BP23 BP24

Red can 0.29 ± 0.77 0.22 ± 0.70 1 0.22 ± 0.70 1 0.27 ± 0.80 3 0.29 ± 0.75 1

Triangle 0.06 ± 0.25 1 0.09 ± 0.3 0.39 ± 0.56 1 0.27 ± 0.52 2 0.34 ± 0.83

Traffic 0.62 ± 0.95 5 0.33 ± 1.24 0:13
 0:4 	 0.33 ± 1.09 0.16 ± 0.48 1

BP25 BP26 BP27 BP28 BP29

Red can 0.29 ± 0.77 0.02 ± 0.13 2 0.21 ± 0.69 1 0.18 ± 0.54 2 0.19 ± 0.51

Triangle 0.22 ± 0.49 0:06
 0:35 	 0.09 ± 0.3 0.09 ± 0.3 0.09 ± 0.3

Traffic 0.14 ± 0.35 1 0.09 ± 0.29 1 0.16 ± 0.37 0.43 ± 0.82 1 0.64 ± 1.28

The numbers in superscripts define in how many images the test fail, while the asterisk identifies the best solutions for the three databases
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modalities, into a single SM. Such work studied four

strategies for feature combination: naive model, model

with non-iterative normalization N(.), model with iterative

normalization and trained model, see Table 5. Moreover, in

order to develop a comparison of the results, we adopt the

testing sets and measurement criterion about the effec-

tiveness of solutions as reported in [14]. In this way, the

false detection rate is computed for the corresponding

target as well as the standard deviation. Note that a target is

considered as detected if the subset of pixels, being dif-

ferent from the empty set, falls within the attended region

also known as proto-object.

The results at the top of Table 5 provide the outcome of

the four strategies tested with three different databases.

According to these results, the best strategy is the trained

model. Now, the results achieved by the BP algorithm are

also sorted, and the best, that actually outperform the

trained model, are highlighted in boldface. Moreover, the

best solutions for each database are highlighted in italic-

boldface and an asterisk. Finally, there were some prob-

lems in which the system was unable to find a solution for

some specific images during the testing stage. Those results

have a superscript that provides the precise number of

images where the testing failed.

(a)

(b)

(c)

Fig. 10 The charts provide the

false detection rate for the best

individuals along 30 executions
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According to Table 5, the following data could be

inferred. Firstly, regarding the red can target, the BP

process finds a better solution in 66.66 % of the runs in

comparison with the trained model, see Fig. 10a. More-

over, the best ADS achieved its highest score during the

14th test-run, being discovered during the third generation.

In fact, this solution scores a false detection rate of 0.08

that corresponds to 5 out of 59 images. Furthermore, the

ADSC14 does not record a single false detection during the

training stage. Now, after studying the warning triangle

results, the BP obtains a better solution in 70 % of the

times in comparison with the trained model, see Fig. 10b.

Here, the best ADST26 was acquired at the 26th trial and

eighth generation. The result achieves a performance with

a rate of 0.06 false detections, in other words, just 2

attempts out of 32 testing images, without a single false

detection during the training stage. Finally, we observe the

difficulty of detecting the traffic signals since the images

are more complicated. Indeed, the best discovered solu-

tions were better than the trained model in 13.33 % of the

runs, see Fig. 10c. In this way, the best solution was

discovered in the 22nd run at the 14th generation. As a

result, the BP algorithm found the best ADSTS22 with a

false detection rate of 0.13 that is equal to six fails out of

the 45 testing images. Contrary to previous results, the

ADSTS22 achieves a higher score of 17.33 during the

training stage in comparison with the perfect fitness score

of 20.

Fig. 11 The charts show the statistics about the frequency of use of functions and terminals computed from the best individuals along 30

executions. Note that the terminal graphs, TO and TFI, do not include the derivatives since all of them were counted as functions
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Table 6 The selection of 6 out of the 30 best ADSC classified according to the structural information

Ind Formula Fittrain Fittest Average

Sample of ADSC based on the orientation dimension

ADSC7 EVOO: Dx(Gr=1(Im))

EVOO: n/a

EFI: CMO

20 17.6271 18.8135

ADSC13 EVOO: Gr=2(0.5 * (Gr=2(Dx(Im))))

EVOC: n/a

EFI: jDxðCMOÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxðCMOÞ

p
j

20 17.8305 18.9152

Sample of ADSC based on the color dimension

ADSC11 EVOO: n/a

EVOC: exp(Im)

EFI: Dx(CMC)

20 16.9492 18.4746

ADSC22 EVOO: n/a

EVOC: Im

EFI: Dx(CMC)

20 16.9492 18.4746

Sample of ADSC based on the orientation and color dimensions

ADSC9 EVOO: Gr=1(Im)

EVOC : ðexpðIrÞ � ðIm � complementðIhÞÞÞ � expðIhÞ
EFI:

ðððDyðDyðCMCÞÞ þ DxðDxðCMOÞÞÞ � expðDxðDxðDxðCMIntÞÞÞÞÞ � Gr¼1ðGr¼2ðGr¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxyðCMOÞ
DxðCMCÞ

q� �
ÞÞÞ

20 18.3051 19.1525

ADSC14 EVOO: Dx(Im)

EVOC: Im

EFI: |Dx(CMC) - Dy(CMO)|

20 18.6441 19.3220

Table 7 The selection of 7 out of the 30 best ADST classified according to the structural information

Ind Formula Fittrain Fittest Average

Sample of ADST based on the orientation dimension

ADST10

ADST19

EVOO: Dx(Dy(Im))

EVOC: n/a

EFI: Dy(CMO)

20 19.3750 19.6875

ADST26 EVOO: Dx(Dy(Im))

EVOC: n/a

EFI: Dx(CMO) ? Dy(CMO)

20 19.3750 19.6875

Sample of ADST based on the color dimension

AVST3 EVOO: n/a

EVOC: (((Im 9 Im) 9 Im)2 9 Im)2

EFI: CMC

20 14.3750 17.1875

AVST7 EVOO: n/a

EVOC: exp(exp(Ib 9 Im))

EFI: |Dy(CMInt) ? CMC| ? Dy(Dy(CMC))

18.7500 16.2500 17.5000

Sample of ADST based on both orientation and color dimensions

AVST0 EVOO: Dy(Gr=2(Dx(Im)))

EVOC: Ik

EFI: Gr=2(CMO ? Dx(Dx(CMC)))

19.3750 18.8125 19.0937

AVST5 EVOO: Dx(Dy(Im))

EVOC : Ir � Ih

EFI: |Dx(CMO) ? (Dy(CMInt) ? Dx(CMC))|

20 16.2500 18.1250
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As a conclusion, BP was able to find, throughout 30

runs, better solutions than those obtained in previous

research. Next, we describe the structural analysis of the

solutions.

Structural Analysis of Solutions

In this section, the solutions are analyzed from the struc-

tural standpoint by describing the distribution of functions

and terminals through the histograms of frequency of use,

see Fig. 11. Our goal was to identify the best components

of the trees for three visual attention tasks. An important

question is: which functions and terminals have more

influence on the VA task? We study the final best indi-

viduals along the 30 runs. Thus, the functions and terminals

are counted only if their respective EVO is combined by

the EFI. Hence, the best solutions are listed in Tables 6, 7

and 8, according to the visual dimensions that were

selected when finding a solution to the problem.

In the experimental results about the red can, high-

lighted in red color, the best ADSC for VA utilize the color

feature 70 % of the time; see Fig. 11. This result was

expected since color is considered as the main character-

istic of the red can; followed by the orientation at the rate

of 52 %. Furthermore, according to the color feature, the

most useful terminal was Im at a rate of 68 % of the time,

while the complement() function was applied in only 20 %

of the time. On the other hand, in terms of orientation, the

Im was again the most useful terminal appearing in 40 % of

the ADSs, with similar results for the functions Dx, Dy and

Gr=1.

Final results about the warning triangle solutions ADST,

highlighted in yellow, converged to the functions and

terminals along the orientation and color dimensions. Note

that 80 % of the ADST utilize orientation while 50 %

color information combined with the functions Dx,

Dy, | ? |, ? and 9 . As a result, the most prominent

dimension was orientation. Indeed, the EVOO was basi-

cally a composition of Dx;Dy;Gr¼2;�;� and ()2 functions;

together with the terminals Im and Ih, see Fig. 11. We can

observe that the results about the traffic signals confirm that

97 % of the ADSTS are based on orientation and that the

EVOO apply the terminals Im and Is, as well as the func-

tions Dx, ()2, | |, H and Gr=1. The blue bars in Fig. 11

illustrate these results. Hence, we can say that the proposed

optimization process is able to find good visual operators

that extract the main characteristics according to the task at

hand.

In this work, the best ADSs can be organized in terms of

the most useful characteristics that were applied during the

EFI stage. Table 6 presents three pairs of ADSC that

exhibit the highest performance in the ‘‘can‘‘ experiments.

Note that all operators base their process on the orientation

and color dimensions. Note also that intensity was never

selected among the optimal solutions for the red can

problem. Thus, the first two individuals use the magenta

band since it matches better the color of the red can, while

Dx was applied probably due to the vertical position of the

can across all images in the testbed. On the other hand, the

ADSC11 and ADSC22 provide local minima that are very

similar in structure, since they are both based on Im and Dx

terminals. Note that the best ADSC14 applies a subtraction

between Dx and Dy computed with their corresponding

CMs.

In this way, we can observe in Table 7 the selection of

seven ADST that were able to focus reliably on the

Table 8 The selection of 4 out of the 30 best ADSTS classified according to the structural information

Ind Formula Fittrain Fittest Average

Sample of ADSTS based on the orientation dimension

AVSTS12 EVOO: Gr=1((Gr=1(Dx(Im)))2)

EVOC: n/a

EFI: Gr=1(Dx(Dx(CMO)) - Dx(Dx(CMO))) - Dy(Dy(CMO))

17.3333 17.3333 17.3333

AVSTS22 EVOO : DxðGr¼2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxðI2

mÞ
p

ÞÞ
EVOC: n/a

EFI: jjCMO �
ffiffiffiffiffiffiffiffiffiffiffi
CMO

p
j �

ffiffiffiffiffiffiffiffiffiffiffi
CMO

p
j

17.3333 16.8889 17.1111

Sample of ADSTS based on both orientation and color dimensions

AVSTS6 EVOO: 0.5*(Dx(Gr=2(Gr=2(Dx(Gr=2(Dxy (Im)))))))

EVOC: Ib

EFI: Gr=1((CMO - Dy(CMC)) - Dy(CMC))

18.2222 16.4444 17.3333

AVSTS23 EVOO: ||Dx(Is)||

EVOC: Ib

EFI: jjðDxðDxðCMOÞÞ � Gr¼1ðDxðDxðCMCÞÞÞÞ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DyðCMOÞ

p
j þ jðDyðCMOÞÞ2 þ DyðCMCÞjj

17.7778 16.7778 17.2778
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Fig. 12 Some details about the inner workings of the best individual ADSC14, which rightly focus the coke in the image database
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Fig. 13 Some details about the inner workings of the best individual ADST26, which rightly focus the emergency warning triangle in the image

database

550 Cogn Comput (2014) 6:528–557

123



Fig. 14 Some details about the inner workings of the best individual ADSTS22, which rightly focus the traffic signals in the image database
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emergency warning triangle. Nevertheless, we have only

six ADSs since the genotype or structural composition of

ADST10 and ADST19 is identical. Note that both avoid the

color dimension. Thus, we can state that the algorithm

discovered a local minimum whose overall performance

scores identical results. Furthermore, the best solution

ADST26 is also based on orientation, and its similarity to

the previous ones is striking. Note that ADST26 has the

same fitness of ADST10 and ADST19, but it is slightly

different in terms of the structural composition since at the

moment of performing feature-integration the individual

applies a new derivative to the conspicuous map. These

results consider that the fitness function is evaluated in one

attempt of the focus of attention, see ‘‘Fitness function or

objective function’’ section. Nevertheless, we can say that

ADST26 is better since it has a lower false detection

according to Table 5. Hence, the best individual ADST26 is

a combination of Dx and Dy over the magenta band; while

Table 9 Sets of selected and discarded functions and terminals for the red can database, where Ia1
2 fIr; Ib; Im; Iy; Ihg and Ia2

2 fIg; Ic; Ik; Is; Ivg

EVOO

FO = { - , H, ()2, Gr=1, Gr=2, ||, 0.5*(), Dx, Dy}

FO discarded = fþ;�;�; j þ j; j � j; log2ðÞg
TO ¼ fIa1

;Gr¼1ðIa1
Þ;Gr¼2ðIa1

Þ;DxðIa1
Þ;DyðIa1

Þ;DxxðIa1
Þ;DyyðIa1

Þ;DxyðIa1
Þg

TO discarded = fIa2
;Gr¼1ðIa2

Þ;Gr¼2ðIa2
Þ;DxðIa2

Þ;DyðIa2
Þ;DxxðIa2

Þ;DyyðIa2
Þ;DxyðIa2

Þg

EVOC

FC ¼ f�;�;
p
; ðÞ2; expðÞ; complementðÞg

FC discarded = { ? , - , | ? |, | - |, log2() }

TC = {Ir, Im, Ik, Ih, Is}

TC discarded = {Ig, Ib, Ic, Iy, Iv}

EFI

FFI ¼ fþ;�;�;�; j þ j; j � j;
p
; expðÞ;Gr¼1;Gr¼2; jj;DxðÞ;DyðÞ;EQðÞg

FFI discarded = {()2}

TFI = {CMInt, CMO, CMC, Du(CMInt), Du(CMO), Du(CMC) }

TFI discarded = ø

Table 10 Sets of selected and discarded functions and terminals for the warning triangle database, where Ia1
2 fIb; Im; Iy; Ik; Ihg and

Ia2
2 fIr; Ig; Ic; Is; Ivg

EVOO

FO = { H, Gr=2, ||, 0.5*(), Dx, Dy}

FO discarded = f�;þ; ðÞ2;Gr¼1;�;�; j þ j; j � j; log2ðÞg
TO ¼ fIa1

;Gr¼1ðIa1
Þ;Gr¼2ðIa1

Þ;DxðIa1
Þ;DyðIa1

Þ;DxxðIa1
Þ;DyyðIa1

Þ;DxyðIa1
Þg

TO discarded = fIa2
;Gr¼1ðIa2

Þ;Gr¼2ðIa2
Þ;DxðIa2

Þ;DyðIa2
Þ;DxxðIa2

Þ;DyyðIa2
Þ;DxyðIa2

Þg

EVOC

FC ¼ f�;�; ðÞ2;þ;�; expðÞg
FC discarded = {H, | ? |, | - |, log2(), complement() }

TC = {Ir, Ig, Ib, Im, Iy, Ik, Ih, Is, Iv}

TC discarded = { Ic}

EFI

FFI = { ? , - , 9 , | ? |, | - |, H, exp(), Gr=1, Gr=2, Dx(), Dy(), ()2, EQ()}

FFI discarded = fjj;�g
TFI = {CMInt, CMO, CMC, Du(CMInt), Du(CMO), Du(CMC) }

TFI discarded = ø
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the ADST3 and ADST7 also apply a nonlinear combination

of functions working with the magenta color. The appli-

cation of Im, and the Dx and Dy functions is also used on

individuals ADST0 and ADST5 in combination with red and

hue bands. Finally, the overall best individual in this test

was the ADST26.

In the case of the traffic signals, the results are more

complex than the two previous ones. Note that the database

for the traffic signals includes a wider variety of images;

hence, the final solutions are more complex. In the final

results, we can appreciate that some particular functions

and terminals have been picked up more frequently. Also,

among the 30 best ADSTS no one is exclusively based on

the color feature. Therefore, we select only four ADSs that

are written on Table 8. The first two, based on orientation,

the ADSTS12 and ADSTS22, are basically created through a

combination of Im, Dx and Dy terminals, as well as the

Gaussian function. Note that ADSTS22 is the best discov-

ered solution as well as the simplest one. Moreover, the

next two ADSTS have a higher complexity and both use

color and orientation data, despite the fact that color

information consists only of the blue band. These ADSs are

few examples of solutions that the BP process is able to

find. Note that the best solutions do not necessarily include

all VOs because the EFI could exclude them. In the fol-

lowing section, we provide as examples three ADSs to

visualize the information flow as a way of illustrating the

inner workings of the best attention process for each image

database, see Figs. 12, 13 and 14.

Final Designs for the Three Databases

This section contains three examples discovered with our

optimization methodology that illustrate the functionality

of the best ADS designs using a diagram where some key

aspects about the structure are illustrated.

Figure 12 depicts the ADSC14 that is used as a first

example; where it is possible to observe the following

noteworthy results. The magenta color band is used in

EVOO and EVOC to filter a big amount of unnecessary

information known in the literature as distraction elements

or the image regions that can mislead the location of the

proto-object. This process allows the system to highlight

more accurately the red can. Moreover, the EVOO applies a

Dx as a way of suppressing the horizontal data while

keeping the red can information. Next, the center-surround

function used within the algorithm task eliminates the

foreground information along the regions with high con-

trast. As a result, we obtain two conspicuity maps, CMO

and CMC, that are able to highlight and discriminate the red

can region as the most prominent of the image. Afterward,

the feature-integration stage consists of the absolute value

computed from the difference across the main directions Dx

and Dy. Finally, the result leads us to the OSM that indi-

cates the desired location achieved by the focus of attention

system.

The next example corresponds to the warning triangle

problem. Figure 13 shows the information flow process for

the ADST26. Again, the solution works through the

Table 11 Sets of selected and discarded functions and terminals for the traffic signals database, where Ia1
2 fIr; Ig; Ib; Im; Iy; Is; Ivg and

Ia2
2 fIc; Ik; Ihg

EVOO

FO = { H, Gr=1, Gr=2, ||, 0.5*(), ()2, Dx, Dy}

FO discarded = f�;þ;�;�; j þ j; j � j; log2ðÞg
TO ¼ fIa1

;Gr¼1ðIa1
Þ;Gr¼2ðIa1

Þ;DxðIa1
Þ;DyðIa1

Þ;DxxðIa1
Þ;DyyðIa1

Þ;DxyðIa1
Þg

TO discarded = fIa2
;Gr¼1ðIa2

Þ;Gr¼2ðIa2
Þ;DxðIa2

Þ;DyðIa2
Þ;DxxðIa2

Þ;DyyðIa2
Þ;DxyðIa2

Þg

EVOC

FC ¼ f�;�;
p
; ÞðÞ2;þ;�; expðÞ; log2ðÞ; complementðÞg

FC discarded = {| ? |, | - |}

TC = {Ir, Ig, Ib, Ic, Im, Ik, Ih, Iv}

TC discarded = {Iy, Is}

EFI

FFI = { ? , - , 9 , | ? |, | - |, H, exp(), Gr=1, Gr=2, Dx(), Dy(), ()2, ||, EQ()}

FFI discarded = f�g
TFI = {CMInt, CMO, CMC, Du(CMInt), Du(CMO), Du(CMC) }

TFI discarded = ø
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(a)

(b)

(c)

Fig. 15 Brain programming

statistics along the execution of

30 experiments with the most

utilized functions and terminals,

grouped by the target’s

database: a red can, b warning

triangle and c traffic signal. 1

shows the graph of best, average

and median fitness. 2 plots the

diversity of population through

the percentage of uniqueness in

the EVOs and EFI; as well as

the Euclidean distance among

the population individuals.

Finally, 3 and 4 depict the

complexity of the structure of

the EVOs and EFI based on the

amount of nodes and depth,

respectively
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magenta color band. Note that this is mainly due to the

color of the emergency warning triangle. In this way, dis-

tractions like the white car in the background are elimi-

nated. On the other hand, since there are multiple red color

objects, the partial results obtained after the visual maps

show several regions that could become more prominent

after the center-surround function. Nevertheless, besides

the color information, the EVOO extracts the orientation

information through the application of two derivatives Dy

and Dx accordingly. In this way, the information about the

color and orientation is applied to produce results that

highlight the main characteristics of the triangle. As a

result, the EFI operator combines the orientation along the

main directions of the image resulting in an OSM where

the most salient region corresponds precisely to the exact

place of the emergency triangle. Indeed, ADSC14 and

ADST26 have a very similar way of working.

Finally, the last example illustrates the best individual

discovered for the traffic signal problem. Figure 14 shows

the ADSTS22 working on a typical example. In this regard,

the ADSTS22 utilizes exclusively the orientation operator

EVOO. Once again, the magenta was the color band that

the evolutionary algorithm selected for the solution of the

VA regarding the traffic signals. Moreover, EVOO applies

two Dx to remove horizontal features and preserve the

vertical position of the traffic signals. After the application

of the center-surround function, resulting in the CMO, we

can distinguish several conspicuous regions. However, the

EFI operator subtracts twice the CMO with the
ffiffiffiffiffiffiffiffiffiffi
CMO

p
,

which can be interpreted as a filter that helps to decrease

the noise level of the CMO. Hence, the OSM presents a

lower number of salient regions, and more importantly, it

focuses on the traffic signal region.

Final Experiments with Reduced Sets of Functions

and Terminals

In this section, we decide to proceed further with the analysis

of the results achieved during the previous experiments

related to the structural composition and the effectiveness of

solutions. As we already mentioned, the best individuals

obtained through the proposed strategy do not use all the

functions and terminals that were proposed empirically.

Therefore, we tested the BP algorithm with reduced sets of

functions and terminals based on the previous results.

Tables 9, 10 and 11 provide the sets of applied and discarded

functions and terminals for each experiment. Note that the

discarded sets represent the elements that were never used by

any of the 30 best solutions of the corresponding test.

However, there are patterns that emerge from these results.

For example, it is noteworthy to observe that the three

experiments arose different results; with the exception on the

selection of the EFI stage, since all terminals were used and

the functions at least once. Note also that independently of

the three tests the following sets of functions fþ;�;�; j þ
j; j � j; log2ðÞg and terminals {Ic} were never used by the

EVOO. Moreover, the set of functions {| ? |, | - |} was

never used by the EVOC.

Figure 15 shows the results of applying a new series of

experiments to test the learning process of BP with the

described reduced sets. Note that for the three experiments,

all the statistics were significantly improved, specially

those related to the fitness function. Thus, the average and

median fitness present a lower standard deviation; while for

the case of the traffic signals, the results show an

improvement on the best fitness.

Finally, from the structural standpoint, we can say that

in this last series of experiments, the evolutionary process

converges toward the local minima reported in ‘‘Structural

analysis of solutions’’ section. For example, in the red can

experiment, a similar solution to ADSC11 appears once and

two similar solutions to ADSC22 were found along with one

copy of it. This phenomena also occurs for the warning

triangle, where the exact same individual ADST10 was

rediscovered in three occasions. Contrary to these results,

in the traffic signals test, neither identical solutions nor

similar individuals were found. Table 12 shows the struc-

ture of the best individual obtained during the 18th run at

the 27th generation of this last experiment. This solution

scores a false detection rate of 0.11 that correspond to five

fails out of the 45 testing images. Moreover, this individual

achieves the highest score of 19.11 during training.

Conclusion

This study presented a novel GP-based algorithm that we

called brain programming and a new VA model based on

Table 12 The best triplet of trees achieved with the reduced set of functions and terminals for the traffic signals database

Ind Formula

ADSTS18 Ori: Dx(Is)

Col:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIg � IvÞ þ expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðImÞ

p
Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIg � IvÞ þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Im �

ffiffiffiffiffiffiffi
exp
p ðImÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIg � IvÞ þ expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðImÞ

p
Þ

q
Þ

r

FI: Gr=2(|Gr=2(Gr=2(|Gr=2(|Dyy(CMO)| - Dxx(CMC))| - Dx(|CMO|)))| - Dx(Gr=1(|CMO|)))
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the artificial dorsal stream, which through the BP algorithm

is able to design a suitable program for the problem of

attending a specific target object. The BP algorithm is a

new optimization/search approach that looks for the best

way of identifying the visual features and the right way of

combining them to highlight the necessary visual infor-

mation for the task at hand. We conducted a visual search

experiment using three different image databases in order

to test our approach. The analysis of the results shows that

BP is an efficient tool to optimize ADSs whose results

outperform previous man-made VA models on a standard

testbed.

Based on our experimental results along 30 evolutionary

runs, we observe that BP is able to provide suitable and

coherent designs, while maintaining the simplicity in the

solutions according to the task at hand. In this way,

regarding the EVOs that are embodied in the ADS struc-

ture, we found that they fulfilled the parsimony principle.

In other words, the simplest solution is always the one

offered by the system since the system is able to find the

local minima.

In addition, we found interesting properties in the EVOs.

For instance, we observe that some EVOs are highly spe-

cialized toward the extraction and combination of the main

characteristics of the object of interest. Thus, for the red

can attention problem, the EFIs focused on the application

of orientation and color dimensions, being color the most

prominent feature for the red can problem. Meanwhile, the

EVOO utilizes the magenta color band and the Dx function.

This is understandable since magenta is closer in the color

space in comparison with the ‘‘red’’ color of the can, while

Dx enhance the appearance of its vertical position. On the

other hand, the principal dimensions of the emergency

warning triangle are also color and orientation. Here, most

of the EFIs selected the orientation dimension: the EVOO

utilizes Dx and Dy to highlight both vertical and horizontal

edges while magenta band is applied to highlight the color

of the can. Finally, regarding the traffic signals, the vast

majority of EFIs are based once again on the orientation

dimension EVOO, which is mainly conformed of the Im

terminal and the Dx function. Moreover, the traffic signals

have several colors and shapes, and for this reason, it is

more difficult for BP to select suitable features. In sum-

mary, our results suggest that through the application of the

BP strategy, it is possible to automatically design VA

systems for focusing a specific target.

In future work, this research offers several new avenues.

Firstly, we plan to test the BP strategy for the ADS problem

with a bigger database of natural images in combination

with pop-out search images. Secondly, the proposed strat-

egy allows us to extend the ADS model by the aggregation

of new feature dimensions such as movement, disparity or

shape. Finally, from the evolutionary computing standpoint

we would like to incorporate other evolutionary techniques,

such as niching, in order to study the problem of diversity.
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