J Grid Computing (2015) 13:329-349
DOI 10.1007/s10723-014-9319-2

The EvoSpace Model for Pool-Based Evolutionary

Algorithms

Mario Garcia-Valdez - Leonardo Trujillo -
Juan-J Merelo - Francisco Ferniandez de Vega -
Gustavo Olague

Received: 28 June 2014 / Accepted: 16 October 2014 / Published online: 7 November 2014

© Springer Science+Business Media Dordrecht 2014

Abstract This work presents the EvoSpace model
for the development of pool-based evolutionary algo-
rithms (Pool-EA). Conceptually, the EvoSpace model
is built around a central repository or population store,
incorporating some of the principles of the tuple-space

M. Garcia-Valdez

Instituto Tecnolégico de Tijuana, Calzada Tecnoldgico S/N,
Tijuana, BC, 22414, Mexico

e-mail: mario@tectijuana.edu.mx

L. Trujillo (P<)

Departamento de Ingenieria Eléctrica y Electrénica,
Posgrado en Ciencias de la Ingenieria, Instituto Tecnoldgico
de Tijuana, Calzada Tecnoldgico S/N,

Tijuana, BC, 22414, Mexico

e-mail: leonardo.trujillo@tectijuana.edu.mx

URL: www.tree-lab.org

J.-J. Merelo

Departamento de Arquitectura y Tecnologia de
Computadores, Centro de Investigacién en Tecnologias de
la Informacién y las Comunicaciones,

Universidad de Granada, Granada, Spain

e-mail: jmerelo@ geneura.ugr.es

URL: http://citic.ugr.es

F. Fernandez de Vega

Grupo de Evolucién Artificial,

Universidad de Extremadura, Extremadura, Spain
e-mail: fcofdez@unex.es

G. Olague

Centro de Investigacion Cientifica y de Educacion Superior
de Ensenada, Ensenada, BC, Mexico

e-mail: olague @cicese.mx

model and adding additional features to tackle some
of the issues associated with Pool-EAs; such as, work
redundancy, starvation of the population pool, unre-
liability of connected clients or workers, and a large
parameter space. The model is intended as a platform
to develop search algorithms that take an opportunis-
tic approach to computing, allowing the exploitation
of freely available services over the Internet or vol-
unteer computing resources within a local network. A
comprehensive analysis of the model at both the con-
ceptual and implementation levels is provided, evalu-
ating performance based on efficiency, optima found
and speedup, while providing a comparison with a
standard EA and an island-based model. The issues
of lost connections and system parametrization are
studied and validated experimentally with encourag-
ing results, that suggest how EvoSpace can be used to
develop and implement different Pool-EAs for search
and optimization.

Keywords Pool-based evolutionary algorithms -
Distributed evolutionary algorithms - Heterogeneous
computing platforms for bioinspired algorithms -
Parameter setting

1 Introduction
Grid Computing was developed by Foster and

Kesselman in the early 1990s [17], an infras-
tructure designed to enable resource sharing from

@ Springer

mailto:mario@tectijuana.edu.mx
mailto:leonardo.trujillo@tectijuana.edu.mx
http://www.tree-lab.org
mailto:jmerelo@geneura.ugr.es
http://citic.ugr.es
mailto:fcofdez@unex.es
mailto:olague@cicese.mx

330

M. Garcia-Valdez et al.

multiple locations, while also being coordinated
to reach a common goal. Early Grid applications
were initially motivated by the particular demands of
advanced science and engineering applications [4],
seeking a low cost alternative to dedicated data centers
or clusters. What distinguished grid computing from
conventional high performance computing systems,
was that grids tend to be more loosely coupled, het-
erogeneous, and geographically dispersed [17]. With
the ubiquity of the Internet, nowadays researchers
have access to vast computational resources which
are disperse and available using various technologies,
including cloud computing [3, 44], peer-to-peer (P2P)
networks [34], and web services [10].

On the other hand, Evolutionary Computation (EC)
researchers require powerful computational resources,
since EC algorithms tend to be computationally
demanding. EC algorithms can benefit from grid com-
puting infrastructures, by designing them as parallel,
distributed and asynchronous systems. Several Evolu-
tionary Algorithms (EAs) have been proposed that dis-
tribute the evolutionary process among heterogeneous
devices, not only among controlled nodes within in-
house clusters, but also in those outside the data center,
in users’ web browsers, smart phones or external
cloud based virtual machines. This reach out approach
allows researchers the use of low cost computational
power that would not be available otherwise. However,
such systems present several noteworthy challenges,
such as the need to manage heterogeneous and unre-
liable computing resources, low bandwidth communi-
cations, as well as security and privacy issues.

This paper is part of an ever-growing effort in
the field of EC to develop algorithms following
this opportunistic approach to computing, allowing
the exploitation of freely available services over the
Internet or volunteer computing resources. To enable
this arbitrary plug-in and plug-out of computational
resources for distributed EAs, a new pool-based archi-
tecture has been proposed [19-21, 29-32, 43]. The
basic idea behind Pool-based EAs (Pool-EAs) is that
all the participants of the distributed algorithm share
a common population stored in a central server, from
which each participant can pull a set of tasks or
data from the server, perform some work and then
return the results back to the server. Pool-EAs dif-
fer from the closely related island model, mainly with
regards to the responsibilities that are assigned to
the server. In the island model the server is usually

@ Springer

responsible for the interaction and synchronization of
all the populations, while in a Pool-EA the server only
receives stateless requests from isolated participants or
clients. In this way, Pool-EAs are capable of an ad-hoc
collaboration of computing resources. However, there
are still several open issues that need to be addressed
for the deployment of a Pool-EA system, particularly:

1. Work Redundancy: in a Pool-EA, two or more par-
ticipants often take the same tasks or data to work
on, possibly duplicating computational effort.

2. Starvation of the Population Pool: this happens
when there are no more tasks or data in the server,
participants must wait idly for tasks to become
available.

3. Participants are Unreliable: participants might
abandon their work, they might malfunction or
loose their connection, thus delaying or failing to
return their results to the server.

4. Parametrization: The number of parameters is
incremented with respect to a traditional EA,
with specialized parameters such as the number
of tasks pulled by each participant, the size of
the pool, the amount of time the server waits
for a result, among others. Moreover, participants
could also have internal parameters, that could be
set homogeneously or heterogeneously.

5. Single Point of Failure: conceptually, there is a
single central server managing the pool, a single
point of failure.

Some of these issues have been widely studied in
distributed systems research. Gelertner and Carriero
[22] developed a model that could address issue (1),
it is based on the concept of a tuple space, a reposi-
tory of tuples or shared objects, that can be accessed
concurrently by several processes. This tuple space
works as a communication and coordination mecha-
nism between distributed processes that interact with
each other through these shared tuples. A distinc-
tive characteristic of this model is that in order to
change the state of a tuple, a process needs to atom-
ically remove the tuple from the space and place it
back only after it has released it; this inherently pro-
vides mutual exclusion since another process cannot
access a tuple while it is being used. A benefit of such
a model for Pool-EAs is that it forbids two clients
from duplicating work. On the other hand, issues (2)
and (4) are very specific to the Pool-EA approach.
Finally, issues (3) and (5) are common for distributed

The EvoSpace Model for Pool-Based Evolutionary Algorithms

331

platforms, and proper solution strategies will have to
consider the particular requirements of the problem
domain [2, 46]. However, issue (5) can be addressed at
the technological level for Pool-EAs, without explic-
itly considering the specific evolutionary model; for
instance, using hardware redundancy, distributed file
systems or transparent data replication.

This paper presents the EvoSpace Model (ESM), a
conceptual framework for the development of Pool-
based EAs [21]. The ESM is built around a central
repository or population store, incorporating some of
the main principles of the tuple-space model. How-
ever, the ESM is not simply an implementation of the
tuple-space model for EAs, since it incorporates addi-
tional mechanisms and concepts specifically tailored
to address each of the above listed issues for Pool-
EAs. In particular, issue (1) is solved by defining the
interaction between distributed workers and the cen-
tralized pool using the tuple space principles. Issue (2)
is solved by incorporating a reinsertion process, that
determines when the central Pool will be starved, and
takes proper corrective measures. Moreover, experi-
mental work presented in this paper suggests that the
ESM is not hampered by issues (3) and (4).

The ESM has two main components, a set of
EvoWorkers and a single instance of an EvoStore. The
EvoStore container manages a set of objects repre-
senting individuals in a EA population. EvoWorkers
pull a subset of individuals from the EvoStore, making
them unavailable to other workers. Moreover, indi-
viduals are removed from the EvoStore as a random
subset or sample of the population, this differs from
the tuple-space paradigm which removes only those
tuples matching a pattern-based query. The ESM also
includes a reinsert operation which allows a sample
once removed from the population to be reinserted on-
demand. Intuitively this can be seen as if individuals
once removed from the EvoStore changed to a phan-
tom state, and if needed they could be brought back
to life. Once an EvoWorker has a sample to work on,
it can perform a partial evolutionary process, and then
return the newly evolved subpopulation to the EvoS-
tore where the new individuals replace those found in
the original sample; at this point replaced or reinserted
individuals can be taken by other clients. Another pos-
sibility is that EvoWorkers pull a sample just to change
the state of individuals and then return the sample,
all of this without executing an EA loop. Example of
this scenario can be found in interactive evolutionary

algorithms, where users pull a sample of individu-
als from the EvoStore container to assign a fitness
value [20, 43]. EvoWorkers perform their tasks in an
asynchronous manner, contrasting with the traditional
sequential and synchronous evolutionary model fol-
lowed by most EAs. Indeed, new evolutionary models,
such as the ESM, allow the design of Pool-EAs that
include algorithmic features present in natural evolu-
tionary systems, but that are difficult to reproduce in
sequential and synchronous processes [13].

This paper presents a detailed description of the
ESM, building upon our previous contributions [19,
21], and providing a comprehensive analysis of the
system at both the conceptual and implementation lev-
els. Furthermore, several design issues are addressed,
that illustrate the robustness of the ESM. Particu-
larly, the problems of lost connections and system
parametrization are studied and validated experimen-
tally, with encouraging results, that suggest how
EvoSpace can be used to develop and implement
different Pool-EAs for search and optimization.

The remainder of the paper proceeds as follows.
First, a comprehensive discussion pertaining to related
work is presented in Section 2. Afterwards, the ESM
is detailed in Section 3 and a reference implemen-
tation is presented in Section 4. Three experimental
validations are performed in Section 5 using genetic
algorithm benchmarks: first, the ESM is compared
with another distributed EA to illustrate some of its
strengths and weaknesses; second, the ESM is com-
pared with a standard EA based on its ability to find
local optima and search efficiency; and finally, a cloud
based deployment is used to evaluate the system’s
communication costs and scalability. Section 6 deals
with two general issues associated with Pool-EAs in
general, and ESM in particular, and proposes useful
solutions which are validated experimentally. Finally,
a summary of this work, conclusions and future work
are presented in Section 7.

2 Related Work

In terms of parallelizing EAs, a large body of work has
developed a variety of parallel models, with impor-
tant practical and theoretical results [1]. However, our
work focuses on the goal of distributing an EA over a
grid, a much less explored topic in EA research. In par-
ticular, this section will contextualize Pool-EAs within

@ Springer

332

M. Garcia-Valdez et al.

the more general research area of distributed EAs, to
correctly frame the contributions made in the proposed
model.

Probably the most unobtrusive way to distribute an
EA over an heterogeneous collection of computing
resources is to run an EA over the Internet using web
browsers. For instance, Klein and Spector [24] and
Merelo et al. [33] developed EAs that distribute fitness
function evaluations over the web using JavaScript on
the client machine, such an approach comes with the
benefit that connected clients do not need to install any
special software on their systems, since the code is
directly executed on the browser. Another recent
example is given by Cotillon et al. [9]; they take the
idea of browser-based EAs to the Android OS, which
can be executed on a large number of mobile devices.
Other common examples of web-based EAs come
from the area of interactive evolution, where users
visit a web page, browse candidate individuals and
participate in the evolutionary process by evaluating
individuals in artistic design problems [20, 26, 38, 43].
However, in these works the EA process is not neces-
sarily executed on the browsers themselves, they are
mostly used as practical interfaces to obtain user input,
while the actual search is performed on the server.

Other researchers have exploited other network-
based technologies to distribute an EA over a set of
computing nodes. For instance, Cole et al. [8] uses
the popular Berkeley Open Infrastructure for Network
Computing (BOINC) to distribute an EA, using the
volunteer computing model, where connected clients
share idle CPU cycles with a research project. Another
example is the work of Fernandez-de-Vega et al. [15],
who also distributes multiple EA runs using a vol-
unteer computing network through BOINC. Garcia-
Arenas et al. [18] used the popular file sharing service
Dropbox as a storage server for an EA. Jiménez-
Laredo et al. [18] uses a P2P architecture to distribute
a Genetic Programming (GP) algorithm over a net-
work. Similarly, the DREAM framework presented
in [35] also distributes an EA using a P2P network
based on mobile multi-agent systems. Another exam-
ple is the ParadisEO object-oriented framework for the
reusable design of parallel and distributed metaheuris-
tics, including EAs, developed by Cahon et al. [6]
using a distributed model based on the Farmer/Worker
paradigm.

Recently, researchers have also begun to fully inte-
grate EAs into the Cloud computing model. For

@ Springer

instance, the Eureqa | GP-based modeling tool, orig-
inally developed by Schmidt and Lipson [37], and
now marketed by Nutonian, easily integrates with
Amazon’s EC2 Cloud service for faster computa-
tion. A better integration of EAs with Cloud mod-
els has already been pursued by some researchers.
Two noteworthy examples are the Offspring frame-
work by Vecchiola et al. [45] and the FlexGP system
developed by Sherry et al. [39]. Offspring runs a
multiobjective EA that is executed on Aneka Enter-
prise Clouds using a simple distribution logic that
makes the use of the cloud transparent for the user,
developed on top of the task model with a plug-
in architecture. FlexGP is probably the first large
scale GP system that runs on the cloud, using an
Island model approach and implemented over Ama-
zon EC2 with a socket-based client-server architec-
ture. Other recent contributions include several tools
and libraries designed to distribute an EA over the
Cloud using a global queue of tasks and a Map-Reduce
implementation [39].

All of these works show great promise in extending
EAs towards modern computing models. However,
they focus on exploiting current distributed comput-
ing technologies to enhance EA performance, while
maintaining the same basic evolutionary model. In
other words, in terms of the search the EA might
perform the exact same process, even if it is done
more efficiently through distributed computing tech-
nologies. On the other hand, the current work deals
with a novel EA model introduced by Pool-EAs. What
is particularly interesting in a Pool-EA, is that they
are explicitly designed to exploit a distributed com-
puting framework, while also employing an EA model
that incorporates non-traditional search dynamics. In
a Pool-EA, the evolving population is stored in a cen-
tralized repository or store, while distributed clients
asynchronously extract a subset of individuals and
return a new subset of individuals after performing
the actual search operators. Pool-EAs are related to
more general systems, such as the A-Teams system
proposed in [40], a problem-solving multi-agent archi-
tecture based on a strongly cyclic network. G. Roy et
al. [36] also developed a multi-threaded system with
a shared memory architecture that is executed within
a distributed environment, where the evolving pop-
ulation of a GA is stored in a centralized pool or

"http://www.nutonian.com/

http://www.nutonian.com/

The EvoSpace Model for Pool-Based Evolutionary Algorithms

333

database. Another example is developed by Bollini
and Piastra [5], who proposed a system that decou-
ples population storage from the actual evolutionary
operations.

Pool-EAs are closely related with Island-Model
EAs (IMEA) [7] with several noteworthy differences
[30]. In an IMEA, each island represents a partially
independent evolutionary process, with a periodic
exchange of individuals following a synchronized
and coordinated protocol, using a fixed topological
structure. On the other hand, a Pool-EA does not
employ such a coordinated interaction scheme, work-
ers perform an evolutionary process using a sample
of individuals taken from the central pool. Moreover,
the manner in which workers interact with the cen-
tral pool is completely random and asynchronous.
These conceptual difference illustrate how a Pool-EA
offers a much simpler approach towards the develop-
ment of a distributed evolutionary search, eliminat-
ing some of the parameters or design choices that
are not easy to determine in an IMEA application
(such as the number of islands, migration strategies
and communication topologies). In other words, a
Pool-EA allows for the deployment of an ad-hoc dis-
tributed EA, where connected clients can connect
and disconnect from the EA process without strict
prior restrictions or system configuration. However,
whether or not these differences provide any per-
formance advantages can be seen as an empirical
question, one that is considered in the experimental
sections of this paper. Moreover, even if it does not,
this paper attempts to determine the performance of
a pool-based system when it is the only, or the best,
alternative to implement a distributed evolutionary
algorithm.

The most complete Pool-EA model proposed thus
far is the SofEA algorithm by Merelo et al. [29,
31, 32]. It is an evolutionary algorithm mapped to
a central CouchDB object store; CouchDB is one
of several such systems available on the market; its
main advantage over others is its massive concurrency
due to its Erlang base and its API based in REST
and JavaScript. SofEA provides an asynchronous and
distributed search process, where the four main evolu-
tionary operators are completely decoupled from the
evolving population; these are: Initialization, Evalu-
ation, Reproduction and Elimination. The last three
processes can be executed in any order and in any
given time step, and more than a single Evaluator and

Reproducer can be executed concurrently. EvoSpace
shares several similarities with SofEA, but it also has
several noteworthy differences. First, while SofEA
also presents a distributed and asynchronous model,
the evolutionary process is still carried out on the cen-
tral repository. On the other hand, in EvoSpace evo-
lution is carried out locally on each client, as if small
sub-populations are periodically isolated, evolved and
then returned to the central store. Second, while both
systems attempt to decouple population storage from
the search operations, SOfEA maintains a fine-grained
control of each individual within the population that
limits the ability of each to interact with remote
clients. For instance, once an individual is evaluated
in SofEA, its fitness cannot be reassigned based on a
future evaluation, this limitation is particularly impor-
tant in the development of interactive systems where
several users could provide input regarding the qual-
ity of a solution [20]. Thirdly, since SofEA considers
each individual as unique, it does not allow duplicates
to appear within the evolving population, something
that is useful for diversity preservation but that might
curtail the exploitation capability of the EA, since
multiple copies of a particularly high-quality solu-
tion cannot be present. Furthermore, if an individual
dies (or is eliminated), then another copy of it cannot
be reintroduced into the population, even if it might
be useful at a later stage of the search. Finally, by
using the individual chromosome as ID, it appears
problematic to extend SofEAs to more complex rep-
resentations such as GP, an extension that is easily
accomplished with EvoSpace.

3 The EvoSpace Model

The ESM is a conceptual framework for the devel-
opment of Pool-based EAs. Figure 1 shows a graph-
ical illustration of the main components and data-
flow within the ESM. The main components are: the
EvoStore population container, remote clients called
EvoWorkers, and the stored objects or Individuals of
an EA search. Each of these components are defined
in the following subsections.

3.1 The EvoStore Container

The EvoStore is an associatively addressed mem-
ory space shared by several processes following the

@ Springer

334

M. Garcia-Valdez et al.

Fig.1 Main components EvoStore
and dataflow within the s
EvoSpace model] Random
P - O o o o population
O/ sample EvoWorker
\ [}
o o O
<v] EA
~N~ 1 — Loop
Relnse Newly Evolution
Evolved Operators
Sample — Copy Individuals P
O & Stored in
=] DI:I o O Relnsertion
oo Queue
[=]
o]
- [Individual
Relnsertion - .
+_+ Removed Individual
Manager

principles of the tuple-space model, which can be
described as a distributed shared memory (DSM)
abstraction, organized as a bag of tuples. A tuple
t is the basic tuple space element, composed by
one or more fields and corresponding values. In this
model, the basic operations that a process can per-
form is to insert or withdraw tuples from the tuple
space. An EvoStore provides a set of interface meth-
ods that operate over a set of objects E S, which can
be seen as an independent EA population. If multi-
ple populations are needed, each one must have an
index as in ES;. For simplicity in this description,
we assume an EvoStore has a single population E'S.
Objects in E'S represent individuals in the population
(these are defined in the next subsection), they can
be removed and replaced from ES using a specified
set of methods. However, the ESM is different from
other tuple space implementations in the sense that
retrieving and reading objects from ES are defined
as random operations. Retrieving a single objects is
not of high interest when accessing the EvoStore,
instead samples of the population are desired, a key
difference with the SofEA approach [29, 31, 32]. The
methods provided by the EvoStore container are the
following:

— Read(n): This method returns a random set A
of objects from ES, with |[A] = n and A C
ES, if n < |ES|, the method returns ES oth-
erwise. When using this method, objects are not
removed from E S meaning that they are intended
for read-only operations. This method is use-
ful to analyze the evolving population without

@ Springer

interfering with the search, to compute perfor-
mance measures online.

— Take(n): Returns a random set A, following the
same logic used for Read(n). However, in this
case the set A is removed from E S, the contents of
the EvoStore are then given by ES = ES\ A. We
define A; as the set returned by the i — thT ake()
operation. The objects taken are also copied to a
new set S; of removed samples and stored within
a temporary collection S on the server, imple-
mented as a priority queue. Sets S; € S can then
be reinserted to E S if necessary.

— Relnsert(i): This method is used to reinsert the
subset of elements removed by the i — thT ake()
operation, such that the contents of EvoSpace are
now ES U S§; if §; € S, ES is left unchanged
otherwise. In other words, the method Relnserts
previously taken samples from the population
store. The Relnsert method can be triggered when
a worker loses its connection to the server or
when the population size gets below a thresh-
old, this prevents the starvation of the popula-
tion pool and also compensates for lost work.
Other distributed algorithms normally use a ran-
dom insertion technique, but this might negatively
impact the search process if good solutions are
lost.

— Insert(A): This method represents the union oper-
ation ESU A, where A is a set of individuals. This
method is normally used to initialize the popula-
tion, with a randomly generated set of individuals.
This differs from Relnsert, which introduces pre-
viously taken individuals. Section 6, analyzes the

The EvoSpace Model for Pool-Based Evolutionary Algorithms

335

effects of using Insert (with a random set of
individuals) instead of Relnsert (with individuals
from a previously unreturned sample) when the
population pool is starved.

— Replace(A,i): Similar to Insert(), however set A
should be understood as a replacement for some
S; € S, hence |A| = |S;[, but the objects in A
can be different (evolved) objects from those in
S;. Moreover, if S; exists it is removed from S.
However, if S; does not exist this means that a
Relnsert (i) operation preceded it, this increases
the size of E'S.

— Remove(A): This method removes all of the
objects in A that are also in E'S, in such a way
that the contents of EvoSpace are now set to
ES\(ANES).

3.2 Individuals

As stated above, the objects stored in ES represent
individuals for an EA. Explicitly, the objects in ES
are stored as dictionaries, an abstract data type that
represents a collection of unique keys and values with
a one to one association. Objects are described by
the following basic fields: an id string that represents
a unique identifier for each object; a chromosome
string, which depends on the EA and the represen-
tation used; a fitness dictionary for each individual,
which allows the system to store multiple fitness val-
ues for multiobjective or dynamic scenarios; a parents
dictionary with identifiers of the individual(s) from
which it was produced. Moreover, this representation
can be extended according to the requirements of each
implementation.

3.3 EvoWorkers

EvoWorkers are autonomous computational entities
that are executed on client machines. They only com-
municate with the EvoStore but not with each other.
Communication is carried out by message passing,
as described in Algorithm 1. Each EvoWorker runs a
local algorithm that executes the main code of an EA
search. The EvoWorker process is straightforward, it
requests a set of objects A; taken from ES. After-
wards, locally the Evolve() function is called where
the actual evolutionary cycle is performed. In this sce-
nario, A; can be seen as a local population on which
evolution is carried out for g generations. The result of

this evolution is then returned back into E S; then, the
EvoWorker can request a new set and repeat the pro-
cess. Otherwise, each EvoWorker could specialize on
a particular part of the evolutionary process, such as
selection, evaluation or genetic variation, an approach
taken by SofEA [31].

In summary, the core ESM elements are the Evo-
Store and EvoWorkers; however, additional compo-
nents must be defined to implement a complete Pool-
EA, but these will be constrained by the structure and
functionality of the core elements. Moreover, all other
components have to be designed in accordance with
the particular type of Pool-EA to be implemented.
Nonetheless, these are still abstract components, not
tied to a particular implementation, as described
next.

3.4 The EvoSpace Server Components

The EvoSpace Server employs a client-server archi-
tecture using at its core an EvoStore container. On
the server side, a process called EvoSpaceServer is
executed, which creates and activates a new EvoS-
tore container object and waits for requests to execute
interface methods; see Algorithm 2. Additionally, on
the server two more processes are executed, these are:
InitializePopulation and RelnsertionManager; see
algorithms 3 and 4. InitializePopulation is executed
once, its goal is obvious, initialize the population by
adding popsize random individuals by calling the
Insert(A) method . The function that creates new
individuals depends on the problem and representa-
tion used. RelnsertionManager is used as a fail-safe
process that periodically checks (every wt seconds) if
the size of the population in E S falls below a certain
threshold min , what is known as pool or population
starving. When this scenario occurs, then rn subsets
S; € S are reinserted into E S using the Relnsert (i)
method. Moreover, the RelnsertionManager could
also be configured so that Relnsert (i) is called when
a particular EvoWorker has lost a connection with
the server, after waiting for a maximum amount of
time for a return (a timeout), in this way recovering the
specific population sample taken by the EvoWorker;
however, this implementation was not tested in the
experiments presented in this paper. Nonetheless, two
different strategies are compared in Section 6, the first
one is Algorithm 4, and a second version that instead
of using the Relnsert (i) method, generates a random

@ Springer

336

M. Garcia-Valdez et al.

replacement for S; and inserts t into ES by calling
Insert(A) (see Fig. 1).

Algorithm 1 The client-side EvoWorker process.

Require: EvoSpace < Reference to an Evospace Server
Require: n <— sample size
Require: rt < retry time
Require: g <— number of generations
while EvoSpace.ES.active do
S; « ES.Take(n)
if A; is not null then
Evolve(A, g)
EvoSpace.ES.Replace(A;)
else
wait(rt)
end if
end while

Algorithm 2 The server-side EvoSpaceServer process.

EwvoSpace < new EvoSpace
EvoSpace.active + true
while FvoSpace.active do
read method
return EvoSpace.method)()
end while

Algorithm 3 The server-side InitializePopulation process.

Require: EvoSpace < Reference to an Evospace Server
Require: popsize <— Number of individuals
7«0
for j < popsize do
ind < new individual() {Problem dependent}
EvoSpace.ES.Insert({i})
j++
end for

Algorithm 4 The server-side RelnsertionManager process.

Require: min, < population size threshold
Require: rn < number of samples to re-insert
Require: EvoSpace «— Reference to an Evospace Server
Require: wt < wait interval
while EvoSpace.active do
if |[EvoSpace.ES| < min,, then
EvoSpace.Relnsert(rn)
end if
wait(wt)
end while

4 Reference Implementation: EvoSpace-Py

In this section a reference implementation of an ESM-
based Pool-EA is presented. The system is called
EvoSpace-py since it was implemented using the
Python language. In the proposed implementation,
individuals are stored in-memory, using the Redis
key-value database redis.io. Redis was chosen over
a SQL-based management system, or other non-SQL

@ Springer

javascript Python c# Objective-C Others
A
\\ json-rpc
cherrypy
1; application-server
python process

evospace.py

redis-server
Redis process

Fig. 2 The EvoSpace-py implementation architecture

alternatives, because it provides a hash based imple-
mentation of sets and queues which are natural data
structures for the EvoStore container. For instance,
selecting a random key from a set has a complex-
ity of O(1). The logic of the EvoStore and EvoSpace
server is implemented as a Python module exposed
as a JSON-RPC Service using Cherrypy and Django
HTTP frameworks. In this way, the developed Evo-
Store server can interact with any language support-
ing json-rpc or Ajax requests. The EvoStore module,
EvoSpace server and EvoWorker implementations in
JavaScript and Python are available with a Simpli-
fied BSD License from http://github.com/mariosky/
EvoSpace.

On the other hand, EvoWorkers must implement
the genetic operators for a particular EA. Given that
EvoSpace-py is implemented as a Python module, a
simple way to implement EvoWorkers is by using
the basic non-distributed GA found in the Distributed
Evolutionary Algorithms in Python (DEAP) library
[16]. However, three methods were added to the local
DEAP algorithm: getSample() and setSample();
and another for the initialization of the population
using DEAPs own methods. For instance, to gener-
ate the initial population DEAP’s initialize() method
is called and the generated population is sent to

redis.io
http://github.com/mariosky/EvoSpace
http://github.com/mariosky/EvoSpace

The EvoSpace Model for Pool-Based Evolutionary Algorithms

337

EvoSpace, then for each generation getSample()
function is called, this executes the EvoStore Take()
method, and the received sample is used to create a
DEAP population which is then evolved for a prede-
fined number of generations. Finally, the set Sample()
function converts the DEAP population to a JSON
object and returns it to the EvoStore through the
Replace() method.

4.1 EvoSpace-py in a Cloud Architecture

The first version of EvoSpace-py was implemented
as a multi-process application running in a single
computer; this implementation was used to run the
first set of experiments described in Section 5. How-
ever, a cloud based implementation was needed to
further evaluate the ESM. This section describes
how EvoSpace-py can be configured to run on a
cloud architecture using two Platform as a Ser-
vice (PaaS) components, Heroku for the EvoSpace
Server and PiCloud for simulating EvoWorkers; a
schematic view of the cloud architecture is shown in
Fig. 3.

Heroku (http://heroku.com) is a multi-language
PaaS, supporting among others Ruby, Python and
Java applications. The basic unit of composition on
Heroku is a lightweight container running a single
user-specified process. These containers, which they
call dynos, can include web (only these can receive
HTTP requests) and worker processes (for instance
processes used for database backups or task queues).
These process types are the prototypes from which one
or more dynos can be instantiated; if the number of

requests to the server increases then more instances
can be assigned on-the-fly. In our case, our CherryPy
web application server runs in one web process, when
the number of workers was increased we added more
dynos (instances) of the CherryPy process. This model
is very different from a Virtual Private Server (VPS)
where users pay for the whole server; in a process
based model, users pay only for the processes they
need; being a freemium model means also that, if a
minimum level of resources is not exceeded, it can be
used for free. Once deployed the web process can be
scaled up by assigning more dynos; for instance, in
the more demanding experiments the web process was
scaled to 20 dynos.

4.2 EvoWorkers as PiCloud Jobs

PiCloud is a PaaS, with deep Python integration, such
that functions are transparently uploaded to PiCLoud’s
servers as units of computational work they call jobs.
Each job is added to a queue, and when there is a com-
puting core available, the job is assigned to it. PiCloud
has several options of computing resources they call
cores, for the experiments type cl and c2 Real Time
cores where used; cl cores have 1 Compute Unit and
low 1/0 Performance, on the other hand c2 cores have
2.5 Compute Units and moderate I/O Performance.

5 Experiments and Results

The goal of this section is to evaluate the ESM
and the proposed EvoSpace-py implementation, using

Fig. 3 EvoSpace-py
cloud-based architecture

D

evospace |<—>| CherryPy ! |
\>®

\\

A\

@»>PLCloud

Local
Computer

@ Springer

http://heroku.com

338

M. Garcia-Valdez et al.

well-known benchmarks for GAs, the OneMax prob-
lem, the K-trap problem [42] and the P-Peaks problem
[11]. In particular, two different versions of EvoSpace-
py are evaluated, a local multi-process implementation
and a cloud-based implementation, using three exper-
imental setups. In the first experiment, the ESM is
compared with the IMEA using the OneMax prob-
lem, to evaluate how it compares to a closely related
EA model that is also amenable to distributed com-
puting frameworks. In the second experiment, the
ESM is evaluated based on its ability to find local
optima on the deceptive K-trap problem, comparing
its performance that of a canonical GA. Finally, in
the third experimental setup the speedup offered by
the cloud-based implementation is evaluated given the
communication overhead that the distributed approach
requires, comparing it with a local execution. Experi-
ment A are done on an Intel Xeon E5 with 10MB of
L3 cache and Turbo Boost up to 3.9GHz, 12GB of
1866MHz DDR3 ECC memory running Mac OS X
10.9 and the Python interpreter version 2.7.2 for 64-bit
architectures. The specifications for the local comput-
ers used in Experiments B and C are a 2.2 Ghz Intel
Core i7 processor, 16 GB of 1333 DDR3 memory, and
Mac OS X 10.7.5.

5.1 Experiment A: Comparison with IMEA Using
OneMax

These experiments focus on comparing EvoSpace
with an IMEA using the classic OneMax problem. In
particular, the goal is to evaluate search efficiency and
the computational effort of each of these strategies.
To do so, a 128-bit OneMax problem is chosen, using
a binary-coded GA with one point mutation and two
point crossover. The population is set to the minimum
size that guarantees that a solution will be found in
over 90% of the runs following the strategy described
in [28], additional configuration details are given in
Table 1. EvoSpace and the IMEA are executed locally,
for the latter the reference implementation provided
by DEAP is used. For EvoSpace, the problem is tested
with 2,3,4 and 6 distributed EvoWorkers, and for the
IMEA the same number of demes, or islands, are used.
In each case, a different population (or deme) size is
used, or in the case of EvoSpace a different sample
size, following [28].

Figure 4 presents a comparison based on the
total number of fitness function evaluations required

@ Springer

Table 1 Parameters for EvoSpace and the IMEA on the One-
Max problem

EvoSpace
Population size 64,64,64,52
Sample Size 24,18,12,8
Worker generations 30

IMEA
Deme size 80,40,38,25
Generations 30
Migration rate 5

Shared Parameters
Crossover prob. 0.5
Mutation prob. 0.2
Tournament selection size 4

to find a solution and the total time to solution.
Figures 4a and 4b show the total number of eval-
uations for EvoSpace and IMEA respectively, and
Figs. 4c and 4d show the same for total time to solu-
tion. First, it is clearly shown that EvoSpace performs
a more efficient search that the IMEA, requiring about
half the total number of fitness evaluations in all cases.
Moreover, with EvoSpace the number of fitness eval-
uations seems to be independent of the number of
EvoWorkers that participate in the search, since in all
cases the median number of evaluations is below 20K.
Moreover, this is validated with a KruskalWallis sta-
tistical test, it gives a pyae = 0.423 which does
not reject the null hypothesis that the different groups
shown in Fig. 4a come from the same distribution.
On the other hand, the IMEA shows greater variabil-
ity, with median values varying from around 35k to
as much as 50k depending on the number of demes,
without a clear trend. In this case, the KruskalWal-
lis test returned a pyaie = 0.009, rejecting the null
hypothesis and suggesting that the number of func-
tion evaluations depends on the number of dems for
an IMEA.

On the other hand, regarding time to solution, it
seems clear that with more workers EvoSpace per-
forms better, with median results of 2.3s with 2
EvoWorkers down to 1.5 with six EvoWorkers. The
IMEA, however, varies between 0.7s and 1.1s, with-
out any clear improvement as the number of demes
increases. These results are expected, given that the
IMEA is executed within the same DEAP process,

The EvoSpace Model for Pool-Based Evolutionary Algorithms

339

50000 Engpace - EvaluaFlons to solutlon'. One-Max 128 plts

70000}
c
o
S 60000}
E
S
» 50000}
2
S
E
2 40000} —_
ﬂ>) 1
o + | + *+
o — I —_—
%5 30000} i " i
Q I 1 ! -
€ | | !
5
Z 20000} [—‘j E
— : !
10000 ! L — -
|
—— n n n
3 4 6

Number of workers

(a) EvoSpace

5 EvoSpace - Time (in seconds) to solution. One-Max 128 bits

Time in seconds

Number of EvoWorkers

(c) EvoSpace

Island Model - Evaluations to solution. One-Max 128 bits
80000 ES T T T

i -
70000} i !
1

| |
| |
| |

60000}

+
T
|
|
1
1
|
|
1

50000

40000

30000}

Number of evaluations to solution

20000}

L PR
10000} — 4
2 3 4 6
Number of Demes
(b) IMEA
5Island Model - Time (in seconds) to solution. One-Max 128 bits
41 1
oy
2 3t]
S
&
£
1
£ 21 ¥ 1
= -
I
‘ -1 X -
18 5 B 5
| —
JR # |
—_ —_
0 L L L L
2 3 4 6
Number of Demes
(d) IMEA

Fig. 4 Comparison of EvoSpace with an IMEA: a, b Number of fitness function evaluations; ¢, d Total time to solution

while EvoSpace is incurring a communication over-
head between Redis, JSON and DEAP. However, in a
distributed network such overheads would be unavoid-
able for any model, and in real-world scenarios fitness
evaluations tend to be the most severe bottleneck.
Therefore, these results suggest that EvoSpace can
perform a more efficient search process that an IMEA.

5.2 Experiment B: K-trap Function
For these experiments the K-trap function is used to

test the ESM, a problem that presents a multi-modal
and deceptive fitness landscape. Table 2 summarizes

the different experimental configurations tested, based
on the K value, number of EvoWorkers, the sam-
ple size taken by each worker and the chromosome
length. A bit-string representation is used, and each
EvoWorker performs 100 total generations on each
sample, using one-point crossover (with crossover
probability set to 1) and one-point mutation (mutation
probability set to 0.06). The number of individuals
in the EvoStore is set to 1024 for 4-trap experiments
and to 4096 for 5-trap, and the maximum number of
total samples that can be taken from the EvoStore
in each run is set to 1000. For comparison, a stan-
dard GA is applied to each benchmark problem. For

@ Springer

340

M. Garcia-Valdez et al.

Table 2 Different experimental configurations used to test the performance of EvoSpace

Experiment A B C D E F G H I J K L M N (6]
K-trap 4 4 4 4 4 4 4 5 5 5 5 5 5

EvoWorkers 1 1 4 4 16 16 32 1 8 16 32 40
Sample size 32 64 32 64 32 64 32 64 32 64 64 64 64 64 64
Chromosome 40 40 40 40 40 40 40 40 40 50 50 50 50 50 50

the 4-trap problem the maximum number of genera-
tions is set to 4000, and for the 5-trap problem it is
set to 1000. These values limit the maximum number
of function evaluations that can be performed, in fact
these values were chosen so the limit is equivalent to
the maximum number of function evaluations from all
of the EvoSpace runs; however, most EvoSpace runs
required much less function evaluations than these
maximum values. In total, 50 runs were performed for
each experimental configuration.

Figure 5a depicts how fitness evolves over all of
the samples taken from EvoSpace. This figure shows
the evolution of best-fitness for a single run of exper-
iment K in Table 2; the analysis focuses on a single
run instead of the mean of all runs to emphasize the
local dynamics of the evolutionary process. The plot
shows how fitness evolved on each EvoWorker that
participated in the search. Evolution of fitness is orga-
nized based on the two temporal axis of the horizontal
plane, one corresponds with the sample number, inde-
pendent of which EvoWorker took the sample, and

Uy Wl

iy
iy ,’%’l///,”,,” ,

i ,,,’«//
Il ;I “I///II///I‘”I,,";
il mf;

I

Fitness

Generations [)

Samples

(a) Evolution of Fitness

the other corresponds to the generations of the local
evolutionary process executed on the EvoWorker. In
other words, these plots provide a collective view of
the evolutionary process from the perspective of all
EvoWorkers. Since the global optimum is a fitness
value of 20, we can see that the evolution on the last
sample taken from EvoSpace reaches the global opti-
mum; also notice the low fitness value for the first few
samples taken in the initial generations.

EvoSpace outperforms the standard GA on both
tests, with a substantial increase in the number of
optima found. In eleven experiments EvoSpace found
the optimal solution in all runs, in the other four cases
(experiment A,D,E and H) it does no worse than 48
total optima found. On the other hand, the sequen-
tial GA only finds 34 optima on the 5-trap problem
and 29 on the 4-trap case. These results were not
expected, since the EvoSpace algorithm is using the
same representation and search operators (mutation
and crossover) than the standard GA. These results
suggest that the population dynamics induced by the

100

[
90 1
z |
g eo—‘ 1
© L |
s 7or
3 oot ¢ 1
@ s ! f
[}
3 '
B a0 1
2
T L 4
£ 30 \
-
6 20f .
ES
10} 1
o ‘ ‘
0 100 200 300 400 500 600 700 800

Samples
(b) Evaluated Individuals

Fig. 5 These plots summarize the results for Experiment K: a evolution of fitness for a single run, the plot shows how fitness evolves
for each sample taken by the EvoWorkers; b scatter plot, considering all runs, of the percentage of non-evaluated individuals

@ Springer

The EvoSpace Model for Pool-Based Evolutionary Algorithms

341

ESM might improve the quality of the results, while
otherwise using a basic representation and genetic
operators.

Since every EvoWorker takes a random sample of
individuals, one concern might be that some individ-
uals of the initial population might not be chosen and
evaluated wasting valuable genetic material. Figure 5b
shows a scatter plot of all of the runs for experiment
K, depicting the percentage of individuals that have
not yet been evaluated; here it is important to remem-
ber that some runs required more samples than others.
The figure clearly shows that the percentage individ-
uals not evaluated within EvoSpace quickly decreases
as more samples are taken.

Finally, a comparison of the computational effort
required in each experiment is given in Fig. 6,
which shows boxplots of all runs in each experi-
ment. Figure 6a plots the total number of individuals
evaluated in each run, which is similar in all exper-
iments and consistent with the results from Experi-
ment A; while Fig. 6b compares the total run time
in seconds. These figures show that run time is
significantly reduced as the number of EvoWorkers
increases.

5.3 Experiment C: P-Peaks
The P-Peaks problem was chosen because the problem

and consequently the computing resources needed for
the search can be appropriately scaled. Proposed by

De Jongetal. in [11], as a generalization of the version
in [12], a P-Peaks instance is created by generating
a set of P random N-bit strings, which represent the
location of the P peaks in the space. To evaluate an
arbitrary bit string x first locate the nearest peak (in
Hamming space). Then the fitness of the bit string is
the number of bits the string has in common with that
nearest peak, divided by N. The optimum fitness for
an individual is 1, and is computed by

1
fr—pPEAKS(X) = lezllx{N —hamming(x, Peak;)} .
=
(H

A large number of peaks induces a time-consuming
search, since evaluating every string iS computation-
ally expensive; this is convenient since in order to
justify a distributed EA fitness computation has to
be significantly larger than the associated network
latency (otherwise, it would always be faster to have
a single-processor version). For this work, the exper-
iment is setup with P = 256 peaks and N =
512 bits, a configuration that requires considerable
computational time for fitness evaluation, and 30
runs are performed. Regarding algorithm parameters
these are summarized in Table 3, in particular notice
that these experiments use PiCloud’s c2 Real Time
cores.

As a baseline execution, the experiment was also
conducted on a local computer. In this setting, the

x 10
+
o +
+
8 * 3000 1
+
o 1T T
= | S 4
S . 25001 |
S 6r [+
s] !
3 gl N 2 2000 !]
- + g I +
° + + 2 | T
2 . o - c b
g 4r + + N : + N . o 1500 + - 4
+
S A R | E |
3 ¥ | + | | . [T !
LA B [[1000 v ! 1
| ! | | | | ! T | ! [
20 T [! |
! l | + +
b 500+ e T + 1
T : + i .+ .
T + T
bt T L L T L L 1 oo oL L o1 +F bt + T il = = £ £ F 1 =] é— 4 4+ =
A B Cc D E F K L M N O A B C D E K L M N O

G H 1 J
EXPERIMENT

(a) Evaluated Individuals

G H 1 J
EXPERIMENT

(b) Run-Time

Fig. 6 The plots show a performance summary for all of the experiments, based on: a number of evaluated individuals over all runs;

and b total run-time

@ Springer

342

M. Garcia-Valdez et al.

Table 3 GA and EvoWorker parameters for Experiment C

GA Parameters

Tournament size 4
Crossover rate 0.85
Population Size 512
Mutation probability 0.5
Independent bit flip probability 0.02

EvoWorker Parameters

Sample Size 16

Generations 128
Variable Parameters

PiCloud Worker Type cl Realtime, c2
Unreliable Realtime
Number of Workers 2,4,8,16,28

Number of Executions 30

problem required considerable computational time:
each run took an average of 1567.36 seconds to find
the optimal solution. The execution used a single core
and CPU activity remained low for the whole length of
the experiment. On the other hand, the parallel execu-
tion time was significantly lower even when only two
EvoWorkers were used, clocking in at less than 180s
even in the worst cases.

Average times for the configuration using Realtime
cores in PiCloud are presented in Fig. 7a. It can be

350 Time (in seconds) to solution.

3001 1

seen that incrementing the number of workers reduced
the time to solution, but only up to 16 EvoWorkers,
however with 28 EvoWorkers the median time to solu-
tion did not improve. There seems to be a point at
which the overall speedup of the distributed search
levels off in this experimental setup.

For problem domains where fitness evaluation of
individuals is not demanding, the added overhead
of communication between the EvoStore and the
EvoWorkers can become a concern. However, our
experiments suggest that this cost is practically negli-
gible. Figure 7b presents boxplots of the time required
to perform the three main EvoSpace-py functions on
the EvoWorkers, computed over all of the 30 runs
using 28 Realtime PiCloud workers. It is clear that
almost all of the computational time is consumed
by the Ewvolve() function which actually performs
the search operations, while the cost of taking a and
returning a sample is relatively low.

6 Overcoming Problems and Limitations

The previous section showed how the ESM can be
used to implement a distributed and asynchronous
Pool-EA based on the EvoSpace-py implementation,
with strong results. However, as stated before, there
are possible downsides to using a Pool-EA, some of
which are directly addressed by the underlying ESM.
However, some issues persist, particularly the critical

Average time spend by each worker in a single sample

— —

250} 1 o
" i 104
he=]
s200f —— — 2
S 3
& ! °
£ 5]
g 150¢ — —_ 1 &
= | ! —_ £
o
‘ — i g o
1001 - ‘ — 4 =4
T
— _ - .
50 . 1
= .
0 2 4 8 16 28 Total time Get sample Evolve Set sample

Number of Realtime workers

(a) Time to solution

Worker Method

(b) Worker Costs

Fig. 7 Evaluation on the P-Peaks problem: a Time required to solution; and b Number of evaluations to solution

@ Springer

The EvoSpace Model for Pool-Based Evolutionary Algorithms

343

problem of possible lost work due to the unreliable
connection of EvoWorkers, and the tedious problem
of algorithm parametrization, a common issue with
almost all EAs that is severely amplified in a Pool-EA.

6.1 Unreliable Workers

In this section, the effect of node unavailability in an
EvoSpace Pool-EA is assessed. The ESM contrasts
with the use of a global queue of tasks and implemen-
tations of Map-Reduce algorithms, such as in [14],
with several benefits relevant to concurrency control
and workload distribution. EvoWorkers are expected
to be unreliable, since they can loose a connection or
could simply shut down or be removed from the client
machine. When an EvoWorker is lost, so are the indi-
viduals pulled from the population store. Depending
on the type of algorithm that is executed, the loss of
these samples could have a high performance cost. As
stated before, to address this problem the ESM uses a
reinsertion algorithm that also prevents the starvation
of the population pool. Other pool based algorithms
normally use a random insertion technique, but this
might negatively impact the search process.

Hence, the goal of this section is to evaluate the
effect the reinsertion algorithm has on the total run-
ning time and number of evaluations of a GA, using
the P-Peaks problem described above with the same
parametrization described in Table 4; in this case cl
Realtime cores are used, which are less efficient than
the c2 cores used in Section 5.3. In particular, two
distinct approaches are evaluated: (a) reinserting pre-
viously taken individuals, at the cost of keeping copies
of samples; and (b) inserting randomly generated indi-
viduals, which has the added effect of increasing
diversity within the population.

The algorithm stops when reaching the optimum
value, or when all EvoWorkers pulled 100 samples.
To simulate unreliable workers, each was assigned
a return sample probability. In the experiments the
lower probability was a 30 % chance of an EvoWorker
returning a sample or an EvoWorker failing 70 %
of the time; other return sample probabilities where
50 %, 70 % and 90 %. Here, it might be said that
workers with a low return probability (say 30 %)
should in fact be avoided, and a proper strategy would
be to eliminate those workers from the evolutionary
process. However, we consider a scenario were the
reliability of an Evoworker is not known a priori, their

reliability can only be assessed after an experiment is
conducted (or during). Over time, however, it might
be possible to build historic profiles of participating
EvoWorkers at take appropriate steps to improve per-
formance when a highly unreliable worker is detected,
but incorporating such strategies is left as future work.

Experiments where carried out using a total of
4, 8 and 16 EvoWorkers. Although supported by
EvoSpace, time intervals were not chosen as triggers
to feed the population with new individuals, pop-
ulation size was used instead. The population size
is a better threshold as it is more critical to a GA
performance, for instance in experiments where the
population remaining in the pool was near starvation,
the time to completion increased. For these experi-
ments, the insertion of individuals was triggered when
less than 128 individuals remain in the EvoStore; the
number of individuals fed to the population was 128,
or 8 complete samples, when the reinsertion algorithm
was used.

Figure 8a shows the time required to solution when
using four EvoWorkers. For a population of 512 indi-
viduals and a sample size of 16, there is no difference
in the time required to solution for percentages of
50 % and above. Both reinsertion algorithms had com-
parable times. For 30 percent, both approaches had a
slight increase in time. For 8 EvoWorkers, shown in
Fig. 8b, there was a marginal decrease in overall time;
and results where similar to those found in the experi-
ments with 4 EvoWorkers. Figure 8c shows results for
16 EvoWorkers, when there was only a 30 % chance of
returning a sample the rate of reinsertion was high, this
produced one reinsertion event approximately once
every 35 samples, considering that 8 samples were
reinserted at every such event. In this case, the inser-
tion of random individuals resulted in a higher time to
solution.

In summary, the results suggest that the reinser-
tion algorithm is better for situations when starvation
of the pool is common. On the other hand, inserting
random individuals is not detrimental when there are
other evolved individuals within the pool, but when
the remaining pool mainly consists of random indi-
viduals, new samples pulled by EvoWorkers need to
start the search from scratch. Therefore, if only a small
number of samples are returned to the pool, the work
needed to reach the optimum is increased. Figure 8d
also shows the number of evaluations needed to reach
an optimum for 16 EvoWorkers. Figures 8e and 8f

@ Springer

344 M. Garcia-Valdez et al.

Percentage of Returned Samples Percentage of Returned Samples

1200—— : : : 700— : : :
+
+ B M
1000} 1 600 | + 1
I
I
500 ! _ i
8001 4 . '

400} Q - |
600} :

-

3001

- | *,76 SRS
foesBLfH M PEPP4e

Time in seconds
Time in seconds

2001

N n 100t 1
4
30 30 50 50 70 70 90 90 30 30 50 50 70 90 90
Re-Insert (left) Random (right) Re-Insert (left) Random (right)
(a) (b)
Percentage of Returned Samples Evaluations to solution.
700 T T T T T T T T 600000 - - - - T - - -
o
X _
600r 500000 4
5001 4
£ 400000} f
«» — °
E ‘ g
S 400 4 3 -
S 5}
@ ' 2
< E i — 8 300000 : i
£ N | - ° |
@ 300f 1 . ! T ! 1 g '
£ - - + I o —_ —_
= — | € . ! — - |
2200000 | [A
200} g] E g - + _
- | - - . ==| 5
- - L 1 -]
100} 1 100000 . - o
4
+
0 0
30 30 50 50 70 70 90 90 30 30 50 50 70 70 90 90
Re-Insert (left) Random (right) 16 Workers, Re-Insert (left) Random (right)
() (d)
800 Number of Workers, 90 Percent of Returned Samples 1200 Number of Workers, 30 Percent of Returned Samples
+
700 N
1000t 8
6001 1
800+ 8
73 0
2 K _
27 1 & + | T
a _ v 600} 1 , T % d
£ [£ ! .
o L ! | ° |
gaoor ! E E | —
= I [—_
300} i o f i o ﬁ |
E ! ‘ + e — | . 1
E - H - 1
- +
200t ! | E — $ E] 1 200
- ! - - —_—
- 4
100 4 8 8 16 16 0 4 4 8 8 16 16
Re-Insert (left) Random (right) Re-Insert (left) Random (right)

(e) (f)

Fig. 8 Unreliable workers: a Time to solution, 4 Workers; b Time to solution, 8 EvoWorkers; ¢ Time to solution, 16 EvoWorkers;
d Number of evaluations, 16 EvoWorkers; e Time to solution, 90 % returned samples; f Time to solution, 30 % returned samples

@ Springer

The EvoSpace Model for Pool-Based Evolutionary Algorithms

345

show the time required to solution for 30 % and 90 %
of returned samples, two extreme cases. For 90 %
both algorithms had similar speedups as the number of
EvoWorkers increases. Conversely, for a return prob-
ability of 30 % there is practically no speedup at all
with more EvoWorkers. The reinsert algorithm, how-
ever, does show a lower median total time compared
with the random strategy, particularly with 4 and 16
EvoWorkers.

Fitness with respect to time was measured as the
average from each consecutive sample pulled by each
worker. For each sample, the average fitness was mea-
sured at the start and at the end of the local evolution.
Also the minimum and maximum fitness values at the
start and finish was recorded. Figure 9a shows the
evolution of fitness with the random insertion algo-
rithm, where the initial fitness drops at certain points
when random insertion occurs, while average final fit-
ness is also compromised. Figure 9b shows results
for the reinsertion algorithm, with more character-
istic convergence curves without substantial fitness
drops.

6.2 Parametrization
In general, EAs are sometimes criticized by the large
number of parameters that need empirical tuning in

order to get them to work properly or reach the
required performance or require additional heuristic

16 Workers, 30% returned, Random

1.00

S ’f:s'j’.%
PR AANN 5
0.95F +=7~0 7 AENY 1
,' S N Ik
. o)
0.90F 7o 1) g 4
S IR
. \ i \\ I
|
0.85F | Y ! v 1
wn ! ! !
4 | Vo
£0.80f | ‘o 1
i£ I ‘o
1 \\’
075! ! f
1
1
0.70f 1
1
! : L ! — Maximum
0.65f ! o | - - Average
. . ’ o Minimum
0-605 5 10 15 20

Sample number

(@)

Fig. 9 Evolution of fitness with respect to sample number,
using 30 % returned samples and 16 EvoWorkers, for each sam-
ple the average fitness was measured at the start (green) and end

processes to be included into the search to adjust
the parameters automatically [25, 27]. In the case of
Pool-EAs, this issue is magnified since the underlying
system architecture adds several degrees of freedom
to the search process, with unknown interactions.
This problem is of particular importance in real-world
scenarios, where there might be little prior insights
regarding what could be the best configuration for an
EA tool, especially if the intent is to use it as a black-
box optimizer; a comprehensive survey on this topic is
given in [27].

A noteworthy contribution is made by Cantd Paz
[7], who addresses the problem of deriving theoret-
ical models of the effects of parameters related to
population size and migration in Island-Model EAs
(IMEA). However, it does not cover the effects of all
possible parameters, or the intricacies of a Pool-EA
algorithm. Therefore, some of the well-known insights
derived from IMEA research (regarding, for example,
migration policies) are not necessarily relevant in the
Pool-EA framework.

Therefore, the recently proposed approach called
Randomized Parameter Setting Strategy (RPSS) [23,
41] is tested with EvoSpace in this section. The idea
behind RPSS is that in a distributed EA, algorithm
parametrization may be completely skipped to con-
duct a successful search. The first works with RPSS
focused on an IMEA model [23, 41], where the tun-
ing task can become overwhelming, particularly if

Maximum

0.65(- - Average
Minimum
060 2 4 6 8 10 12

Sample number

(b)

(blue) of each local evolution, with a random algorithm and b
reinsertion algorithm

@ Springer

346

M. Garcia-Valdez et al.

the number of islands is large. Therefore, the pro-
posal in [23] is to set the parameter values randomly,
without a tuning or self-adaptive process whatsoever.
The RPSS approach sets the parameters of each deme
randomly at the beginning of the run, a very sim-
ple and apparently naive approach. Results suggest
that when the number of distributed process is large
enough, algorithm parameters can be set randomly
and still achieve good results. Therefore the goal of
this section is to evaluate RPSS on an EvoSpace
Pool-EA.

To gauge the effectiveness of RPSS on a Pool-
EA, it is compared with three different parametriza-
tion strategies, similar to what is done in [23, 41].
All methods are compared based on average per-
formance over a set of runs. First, the simplest
approach consists on setting all of the EvoWorker
parameters homogeneously. To do this, 200 random
parametrizations are created, setting crossover and
mutation probability in the range of [0,1], sample size
in the range [12,24] and generations in the range of
[5,30]. The average performance of these runs char-
acterizes the random-homogeneous parametrization,
denoted Average-Homogeneous. From these runs, the
best configuration is chosen, the one that achieved the
best results, and then 20 independent runs are carried
out on each problem, this method is called Best-
Homogeneous. Finally, the random-heterogeneous-
parametrization is considered, where the parameters

Table 4 GA and EvoWorker parameters used in Section 6.1

GA Parameters

Tournament size 4
Crossover rate 0.85
Population Size 512
Mutation probability 0.5
Independent bit flip probability 0.02

EvoWorker Parameters

Sample Size 16

Generations 128

Other Parameters

PiCloud Worker Type Realtime
Number of Workers 48,16

Return Sample Probability 30 %,50 %,90 %
Number of Executions 30

@ Springer

of each EvoWorker are set independently at random
at the beginning of each run; 20 independent runs
are performed, the method is denoted as Average-
Heterogeneous. The algorithms are evaluated using
the P-Peaks problems.

Experiments are carried out using a different num-
ber of EvoWorkers on each problem. The first group
of runs are done with 16 EvoWorkers, and the second
with 120. Based on [23, 41], it is assumed that with an
increased number of workers the RPSS approach will
achieve relatively better results, much closer to the
Best-Homogeneous configuration. This is particularly
important, since increasing the number of EvoWork-
ers greatly magnifies the dimensionality of the tuning
problem. Results are summarized by tracking how the
best solution found so far varies with respect to the
total number of samples taken from the EvoStore.
These results are presented in Fig. 10, showing the
average performance for each of the three methods.

First, with 16 EvoWorkers we can see a clear
trend, the Average Heterogeneous configuration is
similar with the Best Homogeneous configuration,
depicted in Fig. 10a. This is a promising result, since
the heterogeneous configuration did not require any
parameter tuning, while the best homogeneous config-
uration is chosen from a set of 200 runs. Moreover,
the plots show that using an homogeneous configu-
ration with random values achieves noticeably infe-
rior performance. When the number of EvoWorkers
is increased, which is shown in Fig. 10b, a simi-
lar trend appears, however the differences among the
algorithms is reduced. Future work will compare this
technique with other known parametrization methods
[7], to determine the best parametrization strategies
for a wider range of EAs and problem domains. Never-
theless, these results suggest that a random heteroge-
neous parametrization following the RPSS approach
could be used as a simple off-the-shelf parametriza-
tion approach for practitioners interested in using the
ESM.

7 Concluding Remarks

This paper presents the EvoSpace model for the
development of pool-based EAs, which is designed
to exploit computing resources over a network and
can be implemented to run directly on the cloud.
Pool-EAs present several interesting properties that

The EvoSpace Model for Pool-Based Evolutionary Algorithms

347

16 Workers, P-Peaks

120 Workers, P-Peaks

1.0 T

0.8

0.6 1

Fitness

0.4F 1

1.0 T T

0.6 1

Fitness

0.4F 1

0.21 - - Average Homogeneous |] 0-2r -- Average Homogeneous ||
Average Heterogeneous Average Heterogeneous
— Best Homogeneous — Best Homogeneous
0.0 50 100 150 200 250 300 350 400 005 200 400 600 800 1000 1200 1400 1600

Sample number

(a) 16 EvoWorkers

Sample number

(b) 120 EvoWorkers

Fig. 10 Convergence plots for the P-Peaks with 16 (a) and 120 (b) EvoWorkers

are not present in standard EAs, such as the storage
of the population in a central store and performing
the evolutionary process in an asynchronous and dis-
tributed manner through client machines, which in the
ESM are referred to as EvoWorkers. In this sense,
what is particularly interesting about a Pool-EA is
that it incorporates features from natural evolution
that are abstracted away in common EA implementa-
tions. Moreover, they are intended as means by which
evolutionary computation techniques can incorporate
modern computing frameworks. However, Pool-EAs
also present several noteworthy design challenges, that
must be addressed. The proposed ESM is intended as
a conceptual framework that addresses some of these
challenges and allows for the development of a vari-
ety of search techniques that follow this pool-based
approach.

At the implementation level, this work also presents
an instance of ESM called EvoSpace-py, an open
source software tool that simplifies the deployment
of Pool-EAs, as multi-threaded processes or on the
cloud. The system has been programmed using the
Python programming language, the DEAP library and
the Redis key-value database.

Experimental results are presented for a pool-based
GA, using standard benchmarks and comparing the
system with a standard GA search and an IMEA.
Results are encouraging in several respects. First, it
seems that the ESM can perform a more efficient
search that an IMEA, requiring about half as many

fitness function evaluations to find a solution on a
standard benchmark. Second, performance of the
ESM is equivalent or better than standard search, with
the added benefit of improved efficiency and bet-
ter performance on deceptive problems. Third, results
illustrate the benefits of adding client EvoWorkers
to the evolutionary process. Fourth, several apparent
issues with the Pool-EA approach are studied, regard-
ing the lost connection of unreliable workers and the
increased size of the algorithm’s parameter space.
In both cases, experimental results suggest that the
ESM can handle both issues robustly, using built-in
mechanisms and a simple parametrization strategy.

This paper is the first to comprehensively describe
and contextualize the ESM and provides a comprehen-
sive evaluation with respect to standard evolutionary
search. Future work will have to explore the limits and
comparative benefits of the ESM, in order to define
the proper domain of competence of Pool-EAs in gen-
eral and the ESM in particular. Moreover, the ESM
will be leveraged to implement and deploy a complete
web-based Pool-EA, that simplifies the use for other
researchers in an easy to setup manner.

Acknowledgements Funding provided by CONACYT (Mex-
ico) Project No. 29537 from the Programa de Estimulo a la
Innovacién, CONACYT Basic Science Research Project No.
178323, DGEST (Mexico) Research Projects No. 5149.13-P,
5414.14-P and TIJ-ING-2012-110, and IRSES project ACoB-
SEC financed by the European Commission. Additional fund-
ing provided by projects POS-TIC-03903 (Andalusian Regional

@ Springer

348

M. Garcia-Valdez et al.

Government), TIN2011-28627-C04-02 (Spanish Ministry of
Science and Innovation), project CANUBE (http://canube.
wordpress.com) awarded by the CEI-BioTIC UGR. Regional
Government Junta de Extremadura, Consejeria de Economia,
Comercio e Innovacién and FEDER, project GRU10029.

References

. Alba, E.: Parallel Metaheuristics: A New Class of Algo-

rithms. John Wiley & Sons (2005)

. Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L.,

Foster, 1., Kesselman, C., Meder, S., Nefedova, V., Ques-
nel, D., Tuecke, S.: Data management and transfer in
high-performance computational grid environments. Paral-
lel Comput. 28(5), 749-771 (2002)

. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.,

Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., Zaharia, M.: A view of cloud computing. Commun.
ACM 53(4), 50-58 (2010)

. Baxevanidis, K., Davies, H., Foster, 1., Gagliardi, F.: Grids

and research networks as drivers and enablers of future
internet architectures. Comput. Netw. 40(1), 5-17 (2002)

. Bollini, A., Piastra, M.: Distributed and persistent evo-

lutionary algorithms: A design pattern. In: Proceedings
of the Second European Workshop on Genetic Program-
ming, pp. 173-183. Springer-Verlag, London, UK, UK
(1999)

. Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A frame-

work for the reusable design of parallel and distributed
metaheuristics. J. Heuristics 10(3), 357-380 (2004)

. Cantd-Paz, E.: Parameter setting in parallel genetic algo-

rithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.)
Parameter Setting in Evolutionary Algorithms, volume
54 Studies in Computational Intelligence, pp. 259-276.
Springer (2007)

. Cole, N., Desell, T.J., Gonzalez, D.L., de Vega, FE,

Magdon-Ismail, M., Newberg, H.J., Szymanski, B.K.,
Varela, C.A.: Evolutionary algorithms on volunteer com-
puting platforms: The milkyway@ home project, pp. 63—
90. Springer (2010)

. Cotillon, A., Valencia, P., Jurdak, R.: Android genetic pro-

gramming framework. Proceedings of the 15th European
conference on Genetic Programming, EuroGP’12, pp. 13—
24. Springer, Berlin, Heidelberg (2012)

. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N.,

Weerawarana, S.: Unraveling the web services web: An
introduction to SOAP, WSDL, and UDDI. IEEE Internet
Computing 6(2), 86-93 (2002)

. De Jong, K.A., Potter, M.A., Spears, W.M.: Using prob-

lem generators to explore the effects of epistasis. In
Bick T. (ed.) Proceedings of the 7th International Confer-
ence on Genetic Algorithms, 338-345. Morgan Kauffman
(1997)

. De Jong, K.A., Spears, W.M.: An analysis of the interacting

roles of population size and crossover in genetic algorithms.
Proceedings of the 1st Workshop on Parallel Problem Solv-
ing from Nature, PPSN I, pp. 38-47. Springer, London
(1991)

@ Springer

13.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Com-
puting. Springer (2003)

. Fazenda, P., McDermott, J., O’Reilly, U.M.: A library to

run evolutionary algorithms in the cloud using mapreduce.
In: di Chio, C., et al. (eds.) Applications of Evolutionary
Computation, volume 7248 LNCS, pp. 416-425. Springer,
Berlin Heidelberg (2012)

. Fernandez De Vega, F,, Olague, G., Trujillo, L., Lombrafia

Gonzalez, D.: Customizable Execution Environments for
Evolutionary Computation Using BOINC + Virtualization.
Nat. Comput. 12(2), 163-177 (2013)

Fortin, F.A., Rainville, EM.D., Gardner, M.A., Parizeau,
M., Gagné, C.: DEAP: Evolutionary algorithms made easy.
J. Mach. Learn. Res. 13, 2171-2175 (2012)

Foster, 1., Kesselman, C. (eds.): The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1999)

Garcia-Arenas, M., Merelo, J.J., Mora, A.M., Castillo,
P, Romero, G., Laredo, J.: Assessing speed-ups in com-
modity cloud storage services for distributed evolutionary
algorithms. In: 2011 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 304-311. IEEE (2011)

Garcia-Valdez, M., Mancilla, A., Trujillo, L., Merelo, J.J.,
Fernandez-de Vega, F.: Is there a free lunch for cloud-
based evolutionary algorithms? In: 2013 IEEE Congress on
Evolutionary Computation (CEC), pp. 1255-1262 (2013)
Garcia-Valdez, M., Trujillo, L., Ferndndez de Vega, F.,
Merelo Guervds, J., Olague, G.: Evospace-interactive: A
framework to develop distributed collaborative-interactive
evolutionary algorithms for artistic design. In: Machado, P.,
et al. (eds.) Evolutionary and Biologically Inspired Music,
Sound, Art and Design, LNCS, vol. 7834, pp. 121-130.
Springer, Berlin Heidelberg (2013)

Garcia-Valdez, M., Trujillo, L., Fernandez de Vega, F.,
Merelo Guervés, J.J., Olague, G.: EvoSpace: A Distributed
Evolutionary Platform Based on the Tuple Space Model.
In: Esparcia-Alcdzar, A., et al. (eds.) Applications of Evo-
lutionary Computation, LNCS, vol. 7835, pp. 499-508.
Springer, Berlin Heidelberg (2013)

Gelernter, D.: Generative communication in linda. ACM
Trans. Program. Lang. Syst. 7(1), 80-112 (1985)

Gong, Y., Fukunaga, A.: Distributed island-model genetic
algorithms using heterogeneous parameter settings. In:
IEEE Congress on Evolutionary Computation, pp. 820—
827. IEEE (2011)

Klein, J., Spector, L.: Unwitting distributed genetic pro-
gramming via asynchronous JavaScript and XML. Proceed-
ings of the 9th annual conference on Genetic and evolution-
ary computation, GECCO ’07, pp. 1628-1635. ACM, New
York (2007)

Kramer, O.: Self-Adaptive Heuristics for Evolutionary
Computation, Studies in Computational Intelligence, vol.
147. Springer (2008)

Langdon, W.B. In: Keijzer, M., O’Reilly, U.M., Lucas,
S.M., Costa, E., Soule, T. (eds.): Global distributed evolu-
tion of I-systems fractals, pp. 349-358. Springer (2004)
Lobo, F.G., Lima, C.F.,, Michalewicz, Z.: Parameter Setting
in Evolutionary Algorithms. Springer Publishing Company,
Incorporated (2007)

Merelo, J.J., Castillo, P, Mora, A., Esparcia-Alcazar, A.,
Rivas-Santos, V.: NodEO, a multi-paradigm distributed

http://canube.wordpress.com
http://canube.wordpress.com

The EvoSpace Model for Pool-Based Evolutionary Algorithms

349

29.

30.

31.

32.

33.

34.

35.

evolutionary algorithm platform in javascript. Proceedings
of the 2014 conference companion on Genetic and evo-
lutionary computation companion, pp. 1155-1162. ACM
(2014)

Merelo, J.J., Fernandes, C.M., Mora, A.M., Esparcia, A.L:
Sofea: A pool-based framework for evolutionary algo-
rithms using couchdb. Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Com-
putation, GECCO 12, pp. 109-116. ACM, New York
(2012)

Merelo, J.J., Mora, A., Fernandes, C., Esparcia-Alcazar, A.,
Laredo, J.: Pool vs. island based evolutionary algorithms:
An initial exploration. In: P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC), 2012 Seventh International
Conference on, pp. 19-24 (2012)

Merelo-Guervds, J.J., Mora, A., Cruz, J.A., Esparcia, A.L:
Pool-based distributed evolutionary algorithms using an
object database. Proceedings of the 2012 European con-
ference on Applications of Evolutionary Computation,
EvoApplications’12, pp. 446-455. Springer, Berlin, Hei-
delberg (2012)

Merelo-Guervos, J.J., Mora, A., Cruz, J.A., Esparcia-
Alcazar, A.lL, Cotta, C.: Scaling in distributed evolu-
tionary algorithms with persistent population. 2012 IEEE
Congress on Evolutionary Computation (CEC), pp. 1-8.
IEEE Comuter Society (2012)

Merelo Guervos, J.J., Valdivieso, P.A.C., Laredo, J.L.J.,
Garcia, A.M., Prieto, A.: Asynchronous distributed genetic
algorithms with JavaScript and JSON. IEEE Congress on
Evolutionary Computation, pp. 1372-1379. IEEE (2008)
Oram, A. (ed.): Peer-to-Peer: Harnessing the Power of
Disruptive Technologies. O’Reilly & Associates, Inc.,
Sebastopol (2001)

Paechter, B., Back, T., Schoenauer, M., Sebag, M., Eiben,
A., Merelo, J.J., Fogarty, T.: A distributed resource evo-
lutionary algorithm machine (DREAM). In: Evolutionary
Computation, 2000. Proceedings of the 2000 Congress on,
vol. 2, pp. 951-958 vol.2 (2000)

36.

37.

38.

40.

41.

42.

43.

44.

45.

46.

Roy, G., Lee, H., Welch, J.L., Zhao, Y., Pandey,
V., Thurston, D.: A distributed pool architecture for
genetic algorithms. Proceedings of the Eleventh confer-
ence on Congress on Evolutionary Computation, CEC’09,
pp. 1177-1184. IEEE Press, Piscataway, NJ, USA (2009)
Schmidt, M., Lipson, H.: Distilling free-form natural laws
from experimental data. Science 324, 81-85 (2009)
Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez,
A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.:
Picbreeder: A case study in collaborative evolutionary
exploration of design space. Evol. Comput. 19(3), 373-403
(2011)

. Sherry, D., Veeramachaneni, K., McDermott, J., O’Reilly,

U.M.: Flex-gp: Genetic programming on the cloud. In: di
Chio, C., et al. (eds.) Applications of Evolutionary Com-
putation, LNCS, vol. 7248, pp. 477-486. Springer, Berlin
Heidelberg (2012)

Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asyn-
chronous teams: Cooperation schemes for autonomous
agents. J. Heuristics 4(4), 295-321 (1998)

Tanabe, R., Fukunaga, A.: Evaluation of a randomized
parameter setting strategy for island-model evolutionary
algorithms. IEEE Congress on Evolutionary Computation,
pp. 1263-1270. IEEE (2013)

Thierens, D.: Scalability problems of simple genetic algo-
rithms. Evol. Comput. 7, 331-352 (1999)

Trujillo, L., Valdez, M.G., de Vega, EF., Merelo-
Guervoés, J.J.: Fireworks: Evolutionary art project based
on EvoSpace-interactive. IEEE Congress on Evolutionary
Computation, pp. 2871-2878. IEEE (2013)

Varia, J.: Cloud architectures. White Paper of Amazon
(2008)

Vecchiola, C., Kirley, M., Buyya, R.: Multi-objective prob-
lem solving with offspring on enterprise clouds. CoRR
abs/0903.1386 (2009)

Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-
of-the-art and research challenges. J Internet Serv Appl
1(1), 7-18 (2010)

@ Springer

