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Abstract. This work describes the use of genetic algorithms for au-
tomating the photogrammetric network design process. When planning
a photogrammetric network, the cameras should be placed in order to
satisfy a set of interrelated and competing constraints. Furthermore,
when the object is three-dimensional a combinatorial problem occurs.
Genetic algorithms are stochastic optimization techniques, which have
proved useful at solving computationally difficult problems with high
combinatorial aspects. EPOCA (an acronym for “Evolving POsitions of
CAmeras”) has been developed using a three-dimensional CAD inter-
face. EPOCA is a genetic based system that provides the attitude of
each camera in the network, taking into account the imaging geometry,
as well as several major constraints like visibility, convergence angle, and
workspace constraint. EPOCA reproduces configurations reported in the
photogrammetric literature. Moreover, the system can design networks
for several adjoining planes and complex objects opening interesting new
research avenues.

1 Introduction

Photogrammetric network design is the process of placing cameras in order to
perform photogrammetric tasks. An important aspect of any close range pho-
togrammetric system is to achieve an optimal spatial distribution of the cameras
comprising the network. Planning an optimal photogrammetric network for some
special purpose, such as for monitoring structural deformation or for determin-
ing the precise shape characteristics of an object demands special attention from
the quality of the network design. Previous approaches to photogrammetric net-
work design have attempted to identify the main stages in the process. Following
the widely accepted classification scheme of Grafarend [1], network design has
been divided into four design stages from which only the first three are used in
close-range photogrammetry:

1. Zero Order Design (ZOD): This stage attempts to define an optimal datum
in order to obtain accurate object point coordinates and exterior orientation
parameters.
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2. First Order Design (FOD): This stage involves defining an optimal imaging
geometry, which in turn determines the accuracy of the system.

3. Second Order Design (SOD): This stage is concerned with adopting a suitable
measurement precision for the image coordinates. It consists usually in taking
multiple images from each camera station.

4. Third Order Design (TOD): This stage deals with the improvement of a
network through the inclusion of additional points in a weak region.

Photogrammetric measurement operations attempt to satisfy, in an optimal
manner, several objectives such as precision, reliability and economy. The ZOD
and SOD are greatly simplified in comparison to geodetic networks for which the
four stages were originally developed. Indeed FOD, the design of network config-
uration or the sensor placement task needs to be comprehensively addressed for
photogrammetric projects. This design stage must provide an optimal imaging
geometry and convergence angle for each set of points placed over a complex
object [2]. Photogrammetrists have acknowledged the degree of expertise needed
to carry out a photogrammetric project. For example, Mason and Grün [3] de-
veloped a work called CONSENS that follows the expert system approach and
uses multiple cameras in combination with optical triangulation. It outlines a
method of overcoming the set of constraints and objectives presented in cam-
era station placement. The method is based on the theory of generic networks,
which constitutes compiled expertise, describing an ideal configuration of four
camera stations that can be employed to provide a strong imaging geometry for
the class of planar network design problems. Complex objects are divided into
planes; each plane is evaluated through one of these networks and then connected
with some additional cameras with the purpose of establishing just one common
datum. However, the expert system approach has shown it unlikely that full
automation of the network design process will be achieved, due in large part to
human expert’s extensive use of common-sense reasoning [2]. On the other hand,
the Grafarend classification just presented serves the photogrammetric user by
identifying what set of tasks needs to be implemented in designing a network.
Despite the progress that photogrammetrists have made in understanding this
design problem, the photogrammetric measurement technique has rarely been
applied by other than experienced photogrammetrists. Although its definition
seems simple, it reaches a high complexity mainly due to the numerous con-
straints and design decisions that need to be made. Photogrammetric network
design is also difficult to obtain due to the unknown number of configurations
all having very similar accuracy, but with a very different imaging geometry.
Consequently, photogrammetric network design in many machine vision appli-
cations is often conducted in a trial-and-error fashion or using heuristic reasoning
strategies [4]. These strategies fail at solving the problem for the case of complex
objects. Moreover, the main question, how to obtain an initial configuration with
an optimal imaging geometry, is unsolved and left as the responsibility of the
designer. The motivation of this research is to reduce the cost of vision system
design and to equip autonomous inspection systems with photogrammetric net-
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work capabilities, e.g., measurement robots used in flexible manufacturing, see
Figure 1.

Fig. 1. Photogrammetric network simulation of four robots, each camera is mounted
on the robot’s hand, with the goal of measuring the box on the table.

Expert photogrammetrists regard simulation as a viable strategy to the prob-
lem of photogrammetric network design [2]. Computer simulation of close range
photogrammetric networks has been successfully employed and, with the sophis-
tication of computers, a considerable boost to interactive network design has
been achieved. The process of photogrammetric network design optimization
through computer simulation can follow a number of approaches. One tradi-
tional procedure is based on the stages ZOD, FOD and SOD. Given the criteria
related to required triangulation precision, the initial step is to adopt a suitable
observation and measuring scheme (FOD stage). This entails the selection of
an appropriate camera format, focal length, and image measurement system,
as well as a first approximation to suitable network geometry. Once this design
stage is finished, the network is evaluated against the specified criteria. If the
network fails to achieve the criteria, a new stage to diagnose and identify the
problem is performed. FOD or SOD will be applied to produce the new solution.
If both corrections are insufficient a completely new network will be proposed
until a solution to the problem is achieved. In this way, network design is it-
erative in nature. The aim of this paper is to present a new simulation-based
method for solving the most fundamental stage in network design. The problem
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is set in terms of a global optimization design [5,6], which is capable of manag-
ing the problem using an adaptive strategy. It explores the solution space using
both non-continuous optimization and combinatorial search. The approach then
is to minimize the uncertainty of the three dimensional measurements using as
a criterion the average variance of the 3D object points, presuming that the
optimization satisfies a number of primary constraints.

This paper is organized as follows: first the bundle adjustment, the mathe-
matical model universally accepted by photogrammetrists, is reviewed in order
to obtain a criterion useful to the optimization process. Then, a brief summary of
the constraints on network design is presented. The problem of photogrammetric
network design in terms of a stochastic global optimization is described together
with implementation details about visibility and occlusion constraints related to
the complexity of the search space. Finally, results are presented followed by a
conclusion.

2 Photogrammetric Network Modeling

Brown originally developed the bundle method in a fully general form. Today,
the bundle method is recognized as a critical factor in exploiting the mensura-
tion potential of photogrammetry and is almost exclusively used in applications
requiring high accuracy. The method accords simultaneous consideration to all
sets (or bundles) of photogrammetric rays from all cameras. The bundle method
is based on a mathematical camera model comprised of separate functional and
stochastic models. The functional model describing the relationship between the
desired and measured quantities consists of the well-known collinearity equa-
tions. The collinearity equations, derived from the perspective transformation,
are based on the fundamental assumption that the perspective center, the ground
point and its corresponding image point, all lie on a straight line. For each pair
of image coordinates (xij , yij) observed on each image, the following pair of
equations is written:

xij = xp − f

[
m11(Xj − Xc

i ) + m12(Yj − Y c
i ) + m13(Zj − Zc

i )
m31(Xj − Xc

i ) + m32(Yj − Y c
i ) + m33(Zj − Zc

i )

]

yij = yp − f

[
m21(Xj − Xc

i ) + m22(Yj − Y c
i ) + m23(Zj − Zc

i )
m31(Xj − Xc

i ) + m32(Yj − Y c
i ) + m33(Zj − Zc

i )

]
,

(1)

where (xij , yij) denote the coordinates of point j on photograph i, f and (xp, yp)
are the camera constant and image coordinates of the principal point of the sen-
sor defining the sensor’s orientation, (Xj , Yj , Zj) are the object space coordinates
of the corresponding point feature, (Xc

i , Y c
i , Zc

i ) are the object space coordinates
of the perspective center, and mkl are elements of an orthogonal matrix which
defines the rotation between the image and object coordinate systems. This sys-
tem of equations assumes that light rays travel in straight lines, that all rays
entering a camera lens system pass through a single point and that the lens
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system is distortion-less or, as is usual in highly accurate measurement, that dis-
tortion has been cancelled out after having been estimated. Due to the nature
of the measurement process, observations are accompanied by errors. Because
of random errors, as evidenced by the small differences between observations of
the same quantity, observations can be regarded as random variables and their
effects described by means of a stochastic model. Equation 1 can be linearized
through the first order development using the Taylor series. A functional model
can be given as

v = Ay − l
C1 = σ2

0P
−1

where l, v and y are the vectors of observations, residuals and unknown param-
eters, respectively; A is the design or configuration matrix; C1 the covariance
matrix of observations; P the weight matrix; and σ2

0 the variance factor. In
situations where A is of full rank (i.e., where redundant or explicit minimal con-
straints are imposed), the parameter estimates y and the corresponding cofactor
matrix Qy and covariance matrix Cy are obtained as

y = (ATPA)−1ATPL = QyATPL , (2)

and
Cy = σ2

0Qy . (3)

The ultimate aim of any photogrammetric measurement is the determination of
triangulated object point coordinates along with estimates for their precision.
The bundle method is simplified by considering two groups of parameters in the
vector ŷ: y1 comprising exterior orientation (self-calibration parameters were
not considered for simplicity), and y2 containing object coordinate corrections.
Equation 2, then assumes the form

(
y1

y2

)
=

(
AT

1 PA1 AT
1 PA2

AT
2 PA1 AT

2 PA2

)−1 (
ATPL
ATPL

)
,

and the cofactor matrix Qy can be written

Qy =
(

Q1 Q1,2

Q2,1 Q2

)
.

The design optimization goal for precision is to achieve an optimal form of Q2

and therefore the covariance matrix of object point coordinates (Xj , Yj , Zj), con-
sidering the applicable design constraints. The criterion used in the minimization
process was the average variance along the covariance matrix σ2

c

σ2
c =

σ2
0

3n
(trace Q2) .

Before dramatic improvements in computer processing power in recent years, a
valid criticism of designing close range networks by simulation was the compu-
tation time required for a bundle adjustment after each design-iteration even for
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relatively small networks. As shown in [7], the covariance matrix can be obtained
through the equation

Q2 = σ2
0 [(AT

2 PA2)−1 + K] ,

where
K = MQ1MT ,

and
M = (AT

2 PA2)−1AT
2 PA1 .

In this way, the determination of Q2 using this approach represents a rigorous
approach that is termed Total Error Propagation (TEP.) On the other hand, it
has been demonstrated [8] that for a wide range of convergent photogrammetric
networks, K = 0. This consideration is non-rigorous in that it implicitly assumes
that exterior orientation parameters exhibit no dispersion and is called Limited
Error Propagation (LEP). The perspective parameters are assumed to be error
free and the variances in object point coordinates arise solely from the propaga-
tion of random errors in the image coordinate measurements. What is remark-
able from a network design standpoint is that for strong networks (convergent
networks) LEP is sufficiently accurate compared to TEP, causing considerable
computation savings.

3 Constraints on Network Design

The problem of photogrammetric network design (PND) must deal with a series
of constraints in order to propose an optimal camera distribution. The accuracy
of the system is related to the imaging geometry (main objective in PND) as
well as the convergence angle of each camera with respect to each object surface.
In order to answer the most basic question of a favorable imaging geometry
(FOD or the configuration problem) we must distinguish among the several
constraints limiting the search space. Mason [9] has proposed a set of constraints
and objectives that we separate into two parts:

3.1 Main Objective and Primary Constraints

Considering the constraints limiting the search space we identify the following
main objective and three constraints due to the characteristics of the FOD prob-
lem:

– Contribution to intersection angles or the imaging geometry. Within a cam-
era placement system the main objective is to know the contribution of each
camera with respect to the others. Two fundamental questions need to be an-
swered: how many cameras will be needed and where should they be placed.
However, before answering the first question we need to answer the second
one. Once we know where to place a given number of cameras, it is a trivial
matter to decide on the number.
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– Convergence angle. The reliability of image measurements from directions
close to coplanar are difficult and even impossible to obtain. The minimum
allowable incidence angle is dependent on the type of feature, its geometry
and material. The accuracy of the measurement with respect to the conver-
gence angle is a function of the viewing direction and the surface normal at
the feature. In the case of circular targets the minimum convergence angle
is about 20 to 30 degrees for the kind of retro-reflective targets that are
normally used.

– Working space constraint. The workspace in which the photogrammetric sur-
vey is conducted can impose restrictions on the selection of an ideal imaging
geometry. This constraint includes the walls of the room, any obstructions in
the working environment, and the workspace of the robot where the camera
could be mounted.

– Visibility. This constraint is related to the problem of obstructions in the
environment. Viewpoints affected by occlusions caused by other objects in
the workspace, or the object itself, should be avoided if possible. A ray
tracing technique (POV-RAY, a free software package) was used in order
to obtain visibility information of an object from different viewpoints. We
created a database that was then used into our optimization process.

3.2 Secondary Constraints

Optical constraints such as field of view, depth of field, resolution, and image
scale will not be taken into account when estimating a favorable imaging geome-
try. PND is mainly a function of the imaging geometry, as well as the convergence
angle. Optical constraints lack significant importance once the camera observes
the entire object. In this way, an optimal distance of the camera to the object
can be defined a priori in order to measure the different object points. Thus, for
the purpose here all object points appear within the field-of-view, in focus, at a
given resolution and depth of field. In addition, in order to compute the exterior
orientation parameters photogrammetrists affirm that the total number of points
is irrelevant once a sufficient number of points are used during the simulation.

4 The Multi-cellular Genetic Algorithm

The multi-cellular genetic algorithm (MGA) then proceeds as follows:

1. An initial random population of N convergent networks that satisfy the
environment constraints is chosen and is represented by (αn, βn), coded into
a binary string representation.

2. Next, we evaluate each network, and store the corresponding maximum value
of the diagonal of ΛPn for each tree structure. This corresponds to the fitness
value which says how good the network is, compared with other solutions in
the population P (t).
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Fig. 2. The multi-cellular genetic algorithm is represented by a tree structure composed
of a main node where the evaluation process is stored and several leaves corresponding
to each camera. All cameras are codified in two parameters (α, β), which correspond
to the cells of an artificial being. As network evaluation uses only the cells that satisfy
the visibility constraints a combinatorial problem is then involved.

3. Then, we select a population of “good” networks by tournament selection:
two networks are selected from P (t) and are compared selecting the best
individual according to its fitness, yielding the population P (t + 1).

4. From this population, we recombine the binary strings (αn, βn) for each
camera using the following operations:
– Crossover, with a probability1 Pc = 0.7. This operation was implemented

using one-cut-point2. Let the two parents be:

αx = [αx1 αx2 αx3 αx4 αx5 αx6 αx7 αx8 αx9] ,

αy = [αy1 αy2 αy3 αy4 αy5 αy6 αy7 αy8 αy9] .

If they are crossed after the random kth position = 4, the resulting
offspring are:

α′
x = [αx1 αx2 αx3 αx4 αy5 αy6 αy7 αy8 αy9] ,

α′
y = [αy1 αy2 αy3 αy4 αx5 αx6 αx7 αx8 αx9] .

– Mutation, with a probability Pm = 0.005. This operation alters one or
more genes. Assume that the αy5 = 1 gene of the chromosome α′

x is
selected for a mutation. Since the gene is 1, it would be flipped into 0.

These operations yield a new population, which we copy into P (t).
5. Steps 2,3 and 4 are repeated until the optimization criterion stabilizes.
1 The threshold values associated to Pc and Pm were adopted from to the literature.
2 Due to the classification of the MGA this operation works like a multiple-cut-point.
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Finally, this algorithm minimizes the maximum average variance along the co-
variance matrix σ2

c :
fitness = min

i=1...N
(max σ2

c ) . (4)

Thereby, the camera placement Mi relative to the world coordinate frame is
optimized. Geometrically, each ΛPi represents a hyper-ellipsoid, which changes
its orientation and size as each sensor placement Mi does. Thus, an optimal
placement solution is proposed, where the combined uncertainty of all points is
minimal.

c) Fraser’s [10] configuration. d) Multi-robot system.

a) 6 cameras over a plane. b) Similar to Mason [3].

Configurations produced by our evolutionary system.

Fig. 3. Configurations reported in the literature b) and c) were reproduced by EPOCA.
Figure a) improves upon Fraser’s configuration due to SOD operation, which is auto-
matically generated. Moreover, EPOCA can be used in the case of complex objects, as
can be appreciated from Figure d).
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5 Examples and Conclusion

We have run a series of experiments to test the validity of our approach. We
present select results in Figure 3, which show four configurations designed by
EPOCA. The cameras are looking at a set of targets represented by their er-
ror ellipsoids aligned in one or two planes, as well as over a complex object.
These configurations are a product of our evolutionary system. In fact, within a
stochastic optimization process we cannot make conclusions from just one trial.
Each configuration presented is the product of about 50 independent runs. Fig-
ure 3c illustrates a solution with four cameras looking at a planar surface. This
solution is not the standard one used by the expert photogrammetrists: a pho-
togrammetrist usually puts the four cameras at four-corners of a cube whose
center contains the targets to be measured. In fact, Fraser [10] has already dis-
cussed our configuration; he noticed that this configuration is not atypical. Our
experiments confirm Fraser’s statement, hence the equivalence between both
configurations [9].
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